Skip to main content
Log in

Hadley and Rossby regimes in a simple model of convection of a rotating fluid

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper analyzes the properties of solutions to the equations describing the motion of a stratified fluid in the class of velocity and temperature fields linear in coordinates. For an ideal fluid, these equations, on the one hand, are exact for the corresponding hydrodynamic problem and, on the other hand, are identical to the equations of motion for a heavy top. In a conservative case, the equations of motion of a top share common solutions with the equations of geophysical fluid dynamics and reproduce motions similar to those existing in the theory of the large-scale atmospheric circulation. This study considers the effects of viscosity and heat conduction in the fluid, which are, in a sense, similar to the effect of friction in the case of a top. The influence of deflections of the vectors of gravity and external rotation from their standard directions for a plane-parallel atmosphere is also considered. The regimes of motions that are described by the starting equations and approximations commonly used to model the atmospheric general circulation (the quasi-geostrophic approximation) are analyzed. It is shown that these equations correctly describe the Hadley and Rossby circulation regimes and transitions between them that are observed in numerical and laboratory experiments. Particular attention is given to the consistency between different regimes of the exact equations and their quasi-geostrophic approximations, which is manifested for small Rossby numbers and is generally absent for large Rossby numbers. The asymptotic behaviors of the curves of transition between the Hadley and Rossby regimes under the conditions of breaking the external symmetry of flows are obtained. These asymptotics explain the corresponding transition boundaries for the regimes observed in the known experiments in annuluses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Oboukhov, “On the Problem of Geostrophic Wind,” Izv. Akad. Nauk SSSR, Ser. Geograf. Geofiz. 13, 281–306 (1949).

    Google Scholar 

  2. E. N. Lorenz, “Attractor Sets and Quasi-Geostrophic Equilibrium,” J. Atmos. Sci. 37, 1685–1699 (1980).

    Article  Google Scholar 

  3. E. N. Lorenz, “On the Existence of a Slow Manifold,” J. Atmos. Sci. 43, 1547–1557 (1986).

    Article  Google Scholar 

  4. E. N. Lorenz and V. Krishnamurthy, “On the Nonexistence of a Slow Manifold,” J. Atmos. Sci. 44, 2940–2950 (1987).

    Article  Google Scholar 

  5. F. V. Dolzhanskii and V. M. Ponomarev, “Simplest Slow Manifolds of Barotropic and Baroclinic Motions of a Rotating Fluid,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 316–330 (2002) [Izv., Atmos. Ocean. Phys. 38, 277–290 (2002)].

    Google Scholar 

  6. A. E. Gledzer, “Slow Motions in the Reduced Equations of a Stratified Fluid in the Field of Coriolis Forces,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 735–748 (2003). [Izv., Atmos. Ocean. Phys. 39, 662–674 (2003)].

    Google Scholar 

  7. R. Camassa, “On the Geometry of an Atmospheric Slow Manifold,” Phys. D (Amsterdam) 84, 357–397 (1995).

    Google Scholar 

  8. G. M. Reznik, V. Zeitlin, and M. Ben Jelloul, “Nonlinear Theory of Geostrophic Adjustment. Part1. Rotating Shallow-Water Model,” J. Fluid Mech. 445, 93–120 (2001).

    Article  Google Scholar 

  9. G. M. Reznik and R. Grimshaw, “Nonlinear Geostrophic Adjustment in the Presence of a Boundary Theory of Geostrophic Adjustment,” J. Fluid Mech. 471, 257–283 (2002).

    Article  Google Scholar 

  10. S. M. Cox and A. J. Roberts, “Initialization and the Quasi-Geostrophic Slow Manifold,” arXiv:nlin.CD/0303011 (2003).

  11. E. B. Gledzer, F. V. Dolzhanskii, and A. M. Oboukhov, Hydrodynamic-Type Systems and Their Applications (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  12. E. B. Gledzer and V. M. Ponomarev, “On a Finite-Dimensional Approximation of the Motion of an Incompressible Fluid within an Ellipsoid,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 13, 820–827 (1977).

    Google Scholar 

  13. E. B. Gledzer and V. M. Ponomarev, “On an Induced Motion of a Fluid within an Ellipsoid,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 13, 1003–1008 (1977).

    Google Scholar 

  14. F. V. Dolzhanskii, “Mechanical Prototypes of Fundamental Hydrodynamic Invariants,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 37, 446–458 (2001) [Izv., Atmos. Ocean. Phys. 37, 414–425 (2001)].

    Google Scholar 

  15. F. V. Dolzhanskii and L. A. Pleshanova, “Simplest Nonlinear Model of Convection and Its Geophysical Application,” in Atmospheric Physics and Climate Problems, Ed. by G. S. Golitsyn and A. M. Yaglom (Nauka, Moscow, 1980), pp. 95–113 [in Russian].

    Google Scholar 

  16. K. G. Roesner and H. Schmieg, “Instabilities of Spin-Up and Spin-Down Flows Inside of Liquid-Filled Ellipsoids,” in Proceedings of Colloque Pierre Curie (Paris, 1980).

  17. A. E. Gledzer, Candidate’s Dissertation in Mathematics and Physics (IFA RAN, Moscow, 2004).

    Google Scholar 

  18. V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, GRFML, Moscow, 1974; Springer, New York, 1989).

    Google Scholar 

  19. V. I. Arnold and B. A. Khesin, “Topological Methods in Hydrodynamics,” Appl. Math. Sci. 125 (2000).

  20. S. M. Vishik and F. V. Dolzhanskii, “Analogues of the Euler-Poisson Equations and Magnetic Hydrodynamics Related to Lie Groups,” Dokl. Akad. Nauk SSSR 238, 1032–1035 (1978).

    Google Scholar 

  21. E. N. Lorenz, The Nature and Theory of the General Circulation of the Atmosphere (Geneva, 1967; Gidrometeoizdat, Leningrad, 1970).

  22. E. Palmen and C. Newton, “Atmospheric Circulation Systems: Their Structure and Physical Interpretation,” (1969; Gidrometeoizdat, Leningrad, 1973).

    Google Scholar 

  23. F. V. Dolzhanskii and L. A. Myamlina, “On the Influence of a Barotropic Mechanism of Nonlinear Interaction on the Stability of Convective Flows in the Field of Coriolis Forces,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 12, 3–12 (1976).

    Google Scholar 

  24. F. V. Dolzhanskii, “On the Influence of Coriolis Forces on the Formation of a Convective Process within an Ellipsoid,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 9, 908–918 (1973).

    Google Scholar 

  25. V. A. Dovzhenko, Yu. V. Novikov, and A. M. Oboukhov, “Modeling the Process of Generating Vortices in an Axisymmetric Azimuthal Field by a Magnetohydrodynamic Method,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 15, 1199–1202 (1979).

    Google Scholar 

  26. D. Fultz, R. R. Lond, G. V. Owens, et al., “Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions,” Meteorological Monographs, Am. Meteorol. Soc. (1959).

  27. R. Hide, “Some Experiments on the Thermal Convection in a Rotating Liquid,” Q. J. R. Meteorol. Soc. 79, 161 (1953).

    Google Scholar 

  28. Yu. L. Chernous’ko, “Experimental Studies of Two-Dimensional Flows with Horizontal Shear in a Rotating System,” Izv. Akad. Nauk, Fiz. Atm. Okeana 16, 423–427 (1990).

    Google Scholar 

  29. F. V. Dolzhanskii, “On the Generation of Vortex Disturbances against the Background of a Two-Dimensional Flow with Shear Excited in the Field of Coriolis Forces by Mass Sources and Sinks,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 17, 563–573 (1981).

    Google Scholar 

  30. F. V. Dolzhanskii, V. I. Klyatskin, A. M. Oboukhov, and M. A. Chusov, “Nonlinear Hydrodynamic-Type Systems,” (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  31. V. P. Starr, Physics of Negative Viscosity Phenomena (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  32. E. N. Lorenz, “Simplified Dynamical Equations Applied to the Rotating-Basin Experiments,” J. Atmos. Sci. 19, 39–51 (1962).

    Article  Google Scholar 

  33. E. N. Lorenz, “The Mechanics of Vacillation,” J. Atmos. Sci. 20, 448–464 (1963).

    Article  Google Scholar 

  34. J. G. Charney and J. G. De Vore, “Multiple Equilibria in the Atmosphere and Blocking,” J. Atmos. Sci. 36, 1205–1216 (1979).

    Article  Google Scholar 

  35. P. Bernardet, A. Butez, M. Deque, et al., “Low-Frequency Oscillations in a Rotating Annulus with Topography,” J. Atmos. Sci. 47, 3023–3043 (1990).

    Article  Google Scholar 

  36. I. A. Sazonov and Yu. L. Chernous’ko, “Vortex Regimes in the Zonal Flow over a Topography in a β-Channel,” Izv. Akad. Nauk, Fiz. Atm. Okeana 34, 25–32 (1998) [Izv. Atmos. Ocean. Phys. 34, 18–24 (1998)].

    Google Scholar 

  37. A. M. Oboukhov, “Kolmogorov Flow and Its Laboratory Modeling,” Usp. Mat. Nauk 38, 101–111 (1983).

    Google Scholar 

  38. A. B. Glukhovskii and F. V. Dolzhanskii, “Three-Mode Geostrophic Models for the Convection of a Rotating Fluid,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 16, 451–462 (1980).

    Google Scholar 

  39. E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  40. D. Fultz, J. Kaiser, M. Fain, et al., Experimental Investigations of the Spectrum of Thermal Convective Motions in Rotating Annulus, Final Report, Article 2B, AF 19(604)-8361, Dept. of Geophysical Sciences, Univ. of Chicago.

  41. R. Hide and P. Y. Mason, “Sloping Convection in a Rotating Fluid,” Adv. Phys. 24, 47–100 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Gledzer, E.B. Gledzer, F.V. Dolzhanskii, V.M. Ponomarev, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 4, pp. 435–459.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gledzer, A.E., Gledzer, E.B., Dolzhanskii, F.V. et al. Hadley and Rossby regimes in a simple model of convection of a rotating fluid. Izv. Atmos. Ocean. Phys. 42, 399–422 (2006). https://doi.org/10.1134/S0001433806040013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806040013

Keywords

Navigation