Skip to main content
Log in

Sensitivity of amplitude-phase characteristics of the surface air temperature annual cycle to variations in annual mean temperature

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The ERA40 and NCEP/NCAR data over 1958–1998 were used to estimate the sensitivity of amplitude-phase characteristics (APCs) of the annual cycle (AC) of the surface air temperature (SAT) T s. The results were compared with outputs of the ECHAM4/OPYC3, HadCM3, and INM RAS general circulation models and the IAP RAS climate model of intermediate complexity, which were run with variations in greenhouse gases and sulfate aerosol specified over 1860–2100. The analysis was performed in terms of the linear regression coefficients b of SAT AC APCs on the local annual mean temperature and in terms of the sensitivity characteristic D = br 2, which takes into account not only the linear regression coefficient but also its statistical significance (via the correlation coefficient r). The reanalysis data were used to reveal the features of the tendencies of change in the SAT AC APCs in various regions, including areas near the snow-ice boundary, storm-track ocean regions, large desert areas, and the tropical Pacific. These results agree with earlier observations. The model computations are in fairly good agreement with the reanalysis data in regions of statistically significant variations in SAT AC APCs. The differences between individual models and the reanalysis data can be explained, in particular, in terms of the features of the sea-ice schemes used in the models. Over the land in the middle and high latitudes of the Northern Hemisphere, the absolute values of D for the fall phase time and the interval of exceeding exhibit a positive intermodel correlation with the absolute value of D for the annual-harmonic amplitude. Over the ocean, the models reproducing larger (in modulus) sensitivity parameters of the SAT annual-harmonic amplitude are generally characterized by larger (in modulus) negative sensitivity values of the semiannual-harmonic amplitude T s, 2, especially at latitudes characteristic of the sea-ice boundary. In contrast to the averaged fields of AC APCs and their interannual standard deviations, the sensitivity parameters of the SAT AC APCs on a regional scale vary noticeably for various types of anthropogenic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthropogenic Climate Change, Ed. by M. I. Budyko and Yu. A. Izrael’ (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  2. Climate Change: The Science of Climate Change, Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, G. Meira Filho, B. A. Callander, et al. (Cambridge Univ. Press, London, 1996).

    Google Scholar 

  3. I. I. Mokhov and A. V. Eliseev, “Tropospheric and Stratospheric Temperature Annual Cycle: Tendencies of Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 33, 452–463 (1997) [Izv., Atmos. Ocean. Phys. 33, 415–426 (1997)].

    Google Scholar 

  4. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge Univ. Press, New York, 2001).

    Google Scholar 

  5. P. D. Jones, M. New, D. E. Parker, S. Martin, and I. G. Rigor, “Surface Air Temperature and Its Changes over the Past 150 Years,” Rev. Geophys. 37, 173–199 (1999).

    Article  Google Scholar 

  6. J. Hansen, R. Ruedy, J. Glascoe, and M. Sato, “GISS Analysis of Surface Temperature Change,” J. Geophys. Res. D 104, 30997–31022 (1999).

    Article  Google Scholar 

  7. A. V. Eliseev and I. I. Mokhov, “Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere,” Adv. Atmos. Sci. 20, 1–16 (2003).

    Google Scholar 

  8. S. Manabe, M. J. Spelman, and R. J. Stouffer, “Transient Responses of a Coupled Ocean-Atmosphere Model to Gradual Changes of Atmospheric CO2,” J. Clim. 5, 105–126 (1992).

    Article  Google Scholar 

  9. M. E. Mann and J. Park, “Greenhouse Warming and Changes in the Seasonal Cycle of Temperature: Model versus Observations,” Geophys. Rev. Lett. 23, 1111–1114 (1996).

    Article  Google Scholar 

  10. J. Raisanen, “CO2-Induced Climate Change in CMIP2 Experiments: Quantification of Agreement and Role of Internal Variability,” J. Clim. 14, 2088–2104 (2001).

    Article  Google Scholar 

  11. C. J. Wallace and T. J. Osborn, “Recent and Future Modulation of the Annual Cycle,” Clim. Res. 22, 1–11 (2002).

    Google Scholar 

  12. A. S. Monin and Yu. A. Shishkov, Climate History (Gidrometeoizdat, Leningrad, 1979) [in Russian].

    Google Scholar 

  13. Changes in Climate and Landscapes over the Past 65 Million Years (Cenozoic: from Paleocene to Holocene), Ed. by A. A. Velichko (GEOS, Moscow, 1999) [in Russian].

    Google Scholar 

  14. P. E. Tarasov, O. Peyron, J. Guiot, et al., “Last Glacial Maximum Climate of the Former Soviet Union and Mongolia Reconstructed from Pollen and Plant Macrofossil Data,” Clim. Dyn. 15, 227–240 (1999).

    Article  Google Scholar 

  15. P. Valdes, “Paleoclimate Modeling,” in Numerical Modeling of the Global Atmosphere in the Climate System, Ed. by P. Mote and A. O’Neill (Dordrecht, Kluwer, 2000), pp. 465–488.

    Google Scholar 

  16. G. Aalbersberg and T. Litt, “Multiproxy Climate Reconstructions for the Eemian and Early Weichselian,” J. Quat. Sci. 13, 367–390 (1998).

    Article  Google Scholar 

  17. T. Felis, G. Lohmann, H. Kuhnert, et al., “Increased Seasonality in Middle East Temperatures during the Last Interglacial Period,” Nature 429, 164–168 (2004).

    Article  Google Scholar 

  18. D. Texier, N. de Noblet, S. P. Harrison, et al., “Quantifying the Role of Biosphere-Atmosphere Feedbacks in Climate Change: Coupled Model Simulations for 6000 Years BP and Comparison with Paleodata for Northern Eurasia and Northern Africa,” Clim. Dyn. 13, 865–882 (1997).

    Article  Google Scholar 

  19. M. Montoya, H. von Storch, and T. J. Crowley, “Climate Simulation for 125 kyr BP with a Coupled Ocean-Atmosphere General Circulation Model,” J. Clim. 13, 1057–1072 (2000).

    Article  Google Scholar 

  20. S.-I. Shin, Z. Liu, B. Otto-Bliesner, et al., “A Simulation of the Last Glacial Maximum Climate Using the NCAR-CCSM,” Clim. Dyn. 20, 127–151 (2003).

    Google Scholar 

  21. A. V. Eliseev, I. I. Mokhov, and N. Yu. Vakalyuk, “Tendencies of Changes in the Phase Characteristics of the Annual Cycle of Surface Air Temperature for the Northern Hemisphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 16–26 (2000) [Izv., Atmos. Ocean. Phys. 36, 11–20 (2000)].

    Google Scholar 

  22. A. Timmermann, F.-F. Jin, and M. Collins, “Intensification of the Annual Cycle in the Tropical Pacific Due to Greenhouse Warming,” Geophys. Rev. Lett. 31, L12208, doi:10.1029/2004GL019442 (2004).

    Article  Google Scholar 

  23. M. Tesouro, L. Gimeno, R. Nieto, et al., “Interannual Variability of the Annual Cycle of Temperature over Northern Africa,” Stud. Geophys. Geodyn. 49, 141–151 (2005).

    Article  Google Scholar 

  24. M. Claussen, A. Brovkin, A. Ganopolski, et al., “A New Model for Climate System Analysis: Outline of the Model and Application to Palaeoclimatic Simulations,” Environ. Model Assess. 4, 209–216 (1999).

    Article  Google Scholar 

  25. H. Renssen, H. Goosse, T. Fichefet, et al., “Simulating the Holocene Climate Evolution at Northern High Latitudes Using a Coupled Atmosphere-Sea Ice-Ocean-Vegetation Model,” Clim. Dyn. 24, 23–43 (2005).

    Article  Google Scholar 

  26. D. J. Thompson, “The Seasons, Global Temperature, and Precession,” Science 268, 59–68 (1995).

    Google Scholar 

  27. C. Covey, A. Abe-Ouchi, G. J. Boer, et al., “The Seasonal Cycle in Coupled Ocean-Atmosphere General Circulation Models,” Clim. Dyn. 16, 775–787 (2000).

    Article  Google Scholar 

  28. S. J. Lambert and G. J. Boer, “CMIP1 Evaluation and Intercomparison of Coupled Climate Models,” Clim. Dyn. 17, 83–106 (2001).

    Article  Google Scholar 

  29. A. V. Eliseev, M. S. Guseva, I. I. Mokhov, and K. G. Rubinshtein, “Amplitude-Phase Characteristics of the Annual Cycle of Surface Temperature: Comparison of AGCM Output and Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 435–449 (2004) [Izv., Atmos. Ocean. Phys. 40, 381–393 (2004)].

    Google Scholar 

  30. A. V. Eliseev, I. I. Mokhov, K. G. Rubinstein, and M. S. Guseva, “Atmospheric and Coupled Model Intercomparison in Terms of Amplitude-Phase Characteristics of Surface Air Temperature Annual Cycle,” Adv. Atmos. Sci. 21, 837–847 (2004).

    Article  Google Scholar 

  31. C. Covery, K. M. AchutaRao, U. Cubasch, et al., “An Overview of Results from the Coupled Model Intercomparison Project,” Glob. Planet. Change 37, 103–133 (2003).

    Article  Google Scholar 

  32. V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Reponses to Atmospheric CO2 Doubling,” Clim. Dyn. 25, 363–385 (2005).

    Article  Google Scholar 

  33. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  34. A. J. Simmons and J. K. Gibson, The ERA-40 Project Plan (ERA-40 Project Report, European Center for Medium-Range Weather Forecasting, Reading, 2000).

    Google Scholar 

  35. K. G. Rubinshtein and A. M. Sterin, “Comparison of Reanalysis Products and Aerological Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 301–315 (2002) [Izv., Atmos. Ocean. Phys. 38, 264–276 (2002)].

    Google Scholar 

  36. L. Bengtsson, S. Hagemann, and K. I. Hodges, “Can Climate Trends Be Calculated from Reanalysis Data?” J. Geophys. Res. 109, D11111, doi:10.1029/2004JD004536 (2004).

    Article  Google Scholar 

  37. E. Roeckner, L. Begtsson, J. Feicher, et al., “Transient Climate Change Simulations with a Coupled Atmosphere-Ocean GCM Including the Tropospheric Sulfur Cycle,” J. Clim. 12, 3004–3032 (1999).

    Article  Google Scholar 

  38. C. Gordon, C. Cooper, C. A. Senior, et al., “The Simulation of SST, Sea Ice Extents and Ocean Heat Transports in a Version of the Hadley Centre Coupled Model Without Flux Adjustments,” Clim. Dyn. 16, 147–168 (2000).

    Article  Google Scholar 

  39. E. M. Volodin and N. A. Diansky, “Response of a Coupled Atmosphere-Ocean General Circulation Model to Increased Carbon Dioxide,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 193–210 (2003) [Izv., Atmos. Ocean. Phys. 39, 170–186 (2003)].

    Google Scholar 

  40. V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, and V. A. Semenov, The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).

    Google Scholar 

  41. D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. D 104, 27253–27275 (1999).

    Article  Google Scholar 

  42. I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, et al., “Estimation of Global and Regional Climate Changes during the 19th–21st Centuries on the Basis of the IAP RAS Model with Consideration for Anthropogenic Forcing,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 629–642 (2002) [Izv., Atmos. Ocean. Phys. 38, 555–568 (2002)].

    Google Scholar 

  43. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Changes and Their Estimations with the IAP RAS Global Model,” Dokl. Akad. Nauk 402, 243–247 (2005).

    Google Scholar 

  44. V. K. Petukhov, “Zonal Climatic Model of Heat and Water Transfer in the Atmosphere over the Ocean,” in Atmospheric Physics and the Problem of Climate, Ed. by G. S. Golitsyn and A. M. Yaglom (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  45. Climate Change: The Supplementary Report to the IPCC Scientific Assessment, Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, B. A. Callander, and S. K. Varney (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  46. G. Myhre, E. J. Highwood, K. P. Shine, and F. Stordal, “New Estimates of Radiative Forcing Due to Well Mixed Greenhouse Gases,” Geophys. Rev. Lett. 25, 2715–2718 (1998).

    Article  Google Scholar 

  47. I. I. Mokhov, “Method of Amplitude-Phase Characteristics for Analysis of Climate Dynamics,” Meteorol. Gidrol., No. 5, 80–89 (1985).

  48. I. I. Mokhov, “Analysis of the Annual Cycle of Climate Characteristics,” Meteorol. Gidrol., No. 9, 38–45 (1985).

  49. I. I. Mokhov, Diagnostics of the Structure of the Climatic System (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  50. A. V. Eliseev and I. I. Mokhov, “Amplitude-Phase Characteristics of SAT Annual Cycle in Asia: Tendencies of Change Derived from Observations and Reanalyses and from Numerical Experiments with IAP RAS CM,” in Proceedings of Eighth International Symposium on Atmosphere and Ocean Optics: Atmospheric Physics, Ed. by G. A. Zherebtsov, G. G. Matvienko, V. A. Banakh, and V. V. Koshelev (International Society for Optical Engineering, Bellingham, 2002), SPIE-4678.

    Google Scholar 

  51. G. J. Boer and B. Yu, “Climate Sensitivity and Response,” Clim. Dyn. 20, 415–429 (2003).

    Google Scholar 

  52. G. J. Boer and B. Yu, “Climate Sensitivity and Climate State,” Clim. Dyn. 21, 167–176 (2003).

    Article  Google Scholar 

  53. T. J. Philips, A. Henderson-Sellers, P. Irannejad, et al., AMIP2 Modeling Groups Validation of Land-Surface Processes in AMIP Models: A Pilot Study (PCMDI Report, Lawrence Livermore National Laboratory, Livermore, 2000), no. 63.

    Google Scholar 

  54. A. V. Eliseev, M. S. Guseva, I. I. Mokhov, and K. G. Rubinshtein, “Amplitude-Phase Characteristics of Surface Air Temperature in Atmospheric and Climatic Models,” in Abstracts of the World Conference on Climate Change (IGKE, Moscow, 2003), p. 490 [in Russian].

    Google Scholar 

  55. I. Simmonds and D. A. Jones, “The Mean Structure and Temporal Variability of the Semiannual Oscillation in the Southern Extratropics,” Int. J. Climatol. 18, 473–504 (1998).

    Article  Google Scholar 

  56. C. L. Parkinson, D. J. Cavalieri, P. Gloersen, et al., “Arc-tic Sea Ice Extents, Areas and Trends, 1978–1996,” J. Geophys. Res. C 104, 20837–20856 (1999).

    Article  Google Scholar 

  57. J. C. Comiso and K. Steffen, “Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications,” J. Geophys. Res. C 106, 31361–31385 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Eliseev, I.I. Mokhov, M.S. Guseva, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 3, pp. 326–340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V., Mokhov, I.I. & Guseva, M.S. Sensitivity of amplitude-phase characteristics of the surface air temperature annual cycle to variations in annual mean temperature. Izv. Atmos. Ocean. Phys. 42, 300–312 (2006). https://doi.org/10.1134/S0001433806030030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806030030

Keywords

Navigation