Skip to main content
Log in

Modeling a neutrally stratified turbulent air flow over a horizontal rough surface

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The neutrally stratified boundary layer over a smooth rough surface is consider. The turbulent flow is simulated using a finite-difference eddy-resolving model of the atmospheric boundary layer (ABL). The model includes different turbulence closure schemes and numerical approximations for advection components of the momentum balance equation. We investigate the quality of reproduction of spectral characteristics of the turbulent flow and the model’s capabilities to reproduce the observed profile of mean wind velocity near the rough surface. It is shown that the best result is obtained by coupling a numerical scheme of higher order of accuracy with a mixed closure scheme based on an adaptive estimation of the mixing length for subgrid-scale fluctuations. Here, we are able to reproduce the asymptotics of the fluctuation spectrum of the longitudinal component of wind velocity near the surface and within the boundary layer as well as the logarithmic profile of mean velocity near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Turbulence Theory (Nauka, GRFML, Moscow, 1992) [in Russian].

    Google Scholar 

  2. A. N. Kolmogorov, “Local Structure of Turbulence in an Incompressible Fluid for Very Large Reynolds Numbers,” Dokl. Akad. Nauk SSSR 30(4), 99–102 (1941).

    Google Scholar 

  3. J. W. Deardorff, “The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence,” J. Fluids Eng. 95, 429–438 (1973).

    Google Scholar 

  4. O. M. Belotserkovskii, V. A. Andrushchenko, and Yu. D. Shevelev, Dynamics of Spatial Vortex Flows in an Inhomogeneous Atmosphere: Computational Experiment (Yanus-K, Moscow, 2000) [in Russian].

    Google Scholar 

  5. Yu. D. Shevelev, Spatial Problems of Numerical Aerodynamics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  6. G. Katul and C.-R. Chu, “A Theoretical and Experimental Investigation of Energy-Containing Scales in the Dynamic Sublayer of Boundary-Layer Flows,” Bound. Layer. Meteorol. 86, 279–312 (1998).

    Article  Google Scholar 

  7. F. Porte-Agel, C. Meneveau, and M. B. Parlange, “A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer,” J. Fluid Mech. 415(14), 261–284 (2000).

    Article  Google Scholar 

  8. Atmospheric Turbulence and Air Pollution Modelling, Ed. by F. T. M. Nieustadt and H. van Dop (Reidel, Dordrecht, 1982; Gidrometeoizdat, Leningrad, 1985).

    Google Scholar 

  9. P. Sagaut and R. Grohens, “Discrete Filters for Large Eddy Simulation,” Int. J. Num. Mech. Fluids 31, 1195–1220 (1999).

    Article  Google Scholar 

  10. M. Lesieur and O. Metais, “New Trends in Large-Eddy Simulations of Turbulence,” Ann. Rev. Fluid Mech. 28, 45–82 (1996).

    Article  Google Scholar 

  11. C. Meneveau and J. Katz, “Scale-Invariance and Turbulence Models for Large-Eddy Simulation,” Ann. Rev. Fluid Mech. 32, 1–32 (2000).

    Article  Google Scholar 

  12. J. Smagorinsky, “General Circulation Experiments with the Primitive Equations,” Mon. Weather Rev. 91(3), 99–164 (1963).

    Google Scholar 

  13. D. K. Lilly, “The Representation of Small-Scale Turbulence in Numerical Simulation Experiments,” in Proceedings of IBM Scientific Computing Symposium on Environmental Sciences (Yorktown Heights, New York, 1967).

    Google Scholar 

  14. R. A. Clark, J. H. Ferziger, and W. C. Reynolds, “Evaluation of Subgrid-Scale Models Using an Accurately Simulated Turbulent Flow,” J. Fluid Mech. 91(2), 1–16 (1979).

    Article  Google Scholar 

  15. A. Scotti and C. Meneveau, “A Fractal Model for Large Eddy Simulation of Turbulent Flow,” Phys. D (Amsterdam) 127(4), 198–232 (1999).

    Google Scholar 

  16. F. T. M. Nieuwstadt, P. J. Mason, C.-H. Moeng, and U. Schumann, “Large-Eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer Codes,” in Turbulent Shear Flows, Vol. 8 (Springer, Berlin, 1993).

    Google Scholar 

  17. P. J. Mason, “Large-Eddy Simulation of the Convective Atmospheric Boundary Layer,” J. Atmos. Sci. 46, 1492–1516 (1989).

    Article  Google Scholar 

  18. P. J. Mason and D. J. Thomson, “Stochastic Backscatter in Large-Eddy Simulations Boundary Layer,” J. Fluid Mech. 415(14), 261–284 (2000).

    Google Scholar 

  19. J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved Subgrid Scale Models for Large-Eddy Simulation,” Paper 80-1357, Am. Inst. Aeronaut. Astronaut. (1980).

  20. S. Liu, C. Meneveau, and J. Katz, “On the Properties of Similarity Subgrid-Scale Models As Deduced from Measurements in a Turbulent Jet,” J. Fluid Mech. 275(18), 83–91 (1994).

    Article  Google Scholar 

  21. Y. Zang, R. L. Street, and J. Koseff, “A Dynamic Mixed Subgrid-Scale Model and Its Application to Turbulent Recirculating Flows,” Phys. Fluids A 5, 3186–3196 (1993).

    Article  Google Scholar 

  22. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids. A 3, 1760–1765 (1991).

    Article  Google Scholar 

  23. I. Esau, “Simulation of Ekman Boundary Layers by Large Eddy Model with Dynamic Mixed Subfilter Closure,” Environ. Fluid Mech. 4, 273–303 (2004).

    Article  Google Scholar 

  24. C. Meneveau, T. S. Lund, and W. H. Cabot, “A Lagrangian Dynamic Sub-Grid Scale Model of Turbulence,” J. Fluid Mech. 319, 353–385 (1996).

    Article  Google Scholar 

  25. C.-H. Moeng, “A Large-Eddy Eddy Simulation Model for Study of Planetary Boundary-Layer Turbulence,” J. Atmos. Sci. 46, 2311–2330 (1984).

    Article  Google Scholar 

  26. G. I. Marchuk, V. P. Dymnikov, and V. B. Zalesnyi, Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods of Their Implementation (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  27. A. E. Perry, S. Henbest, and M. S. Chong, “A Theoretical and Experimental Study of Wall Turbulence,” J. Fluid Mech. 165, 163–199 (1986).

    Article  Google Scholar 

  28. S. P. Oncley, C. A. Friehe, J. C. LaRue, et al., “Surface Layer Fluxes, Profiles, and Turbulence Measurements over Uniform Terrain under Near-Neutral Conditions,” J. Atmos. Sci. 53, 1029–1044 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Glazunov, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 3, pp. 307–325.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazunov, A.V. Modeling a neutrally stratified turbulent air flow over a horizontal rough surface. Izv. Atmos. Ocean. Phys. 42, 282–299 (2006). https://doi.org/10.1134/S0001433806030029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806030029

Keywords

Navigation