Skip to main content
Log in

Spectral-temporal structure of variations in the atmospheric total ozone in central Eurasia

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of long-term (1980–2003) systematic measurements of the total ozone content at the Issyk Kul station (42.6° N, 77.0° E; 1650 m above sea level) are presented. The statistical characteristics and spectral structure of variations in the total ozone and the main tendencies of its temporal variability are determined. It is found that the total ozone content decreased in 1980–2003 at an average rate of (−1.29±0.08) DU/yr. The results of Fourier and wavelet analyses have shown that only oscillations with periods of 12, 27–29, and 102–105 months are rather stable and can be represented as harmonic oscillations. Oscillations with periods shorter than six months have the character of periodically arising pulsations. Among these, oscillations with periods of 27–29 and 34–37 days can be distinguished. It is noted that the spectral-temporal structure of variations in the total ozone content obtained from ground-based measurements at the Issyk Kul station is in good agreement with the corresponding structure obtained from TOMS satellite measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scientific Assessment of Ozone Depletion: 2002, WMO Global Ozone Research and Monitoring Project Report No. 47 (Geneva, 2003).

  2. E. L. Aleksandrov, Yu. A. Izrael’, I. L. Karol’, and A. Kh. Khrgian, “Ozone Shield of the Earth and Its Changes” (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  3. K. Ya. Kondrat’ev, “Global Ozone Dynamics,” Itogi Nauki Tekh., Ser.: Geomagn. Vysok. Sloi Atmos. 2 (1989).

  4. R. D. Bojkov and D. S. Balis, “Characteristics of Episodes with Extremely Low Ozone Values in the Northern Middle Latitudes 1957–2000,” Ann. Geophys. 19, 797–807 (2001).

    Google Scholar 

  5. V. E. Fioletov, G. E. Bodeker, A. J. Miller, et al., “Global and Zonal Total Ozone Variations Estimated from Ground Based and Satellite Measurements: 1964–2000,” J. Geophys. Res. 107, 4647, doi.: 10.1029/2001JD001350 (2002).

    Article  Google Scholar 

  6. V. V. Zuev and S. L. Bondarenko, “Long-Term Variability of the Ozonosphere: Past and Future,” Opt. Atmos. Okeana 15, 909–911 (2002).

    Google Scholar 

  7. T. A. Egorova, E. V. Rozanov, I. L. Karol’, et al., “Simulation of Interannual Variations in the Total Ozone Content in 1993–2000 and the Influence of Restrictions on the Production of Ozone-Destroying Substances,” Meteorol. Gidrol., No. 1, 5–13 (2002).

  8. J. Austin and N. Butchart, “Coupled Chemistry-Climate Model Simulations for the Period 1980 to 2020: Ozone Depletion and the Start of Ozone Recovery,” Q. J. R. Meteorol. Soc. B 129, 3325–3341 (2003).

    Google Scholar 

  9. E. Manzini, B. Steil, C. Bruhl, et al., “A New Interactive Chemistry-Climate Model. II. Sensitivity of the Middle Atmosphere to Ozone Depletion and Increase in Greenhouse Gases: Implication for Recent Stratospheric Cooling,” J. Geophys. Res. D 108, 4429, doi:10.1029/2002JD002977 (2003).

    Article  Google Scholar 

  10. M.J. Newchurch, E.-S. Yang, D. M. Cunnold, et al., “III. Evidence for Slowdown in Stratospheric Ozone Loss: First Stage of Ozone Recovery,” J. Geophys. Res. D 108, 4507, 10.1029/2003JD003471 (2003).

    Google Scholar 

  11. M. Salby and P. Callaghan, “Interannual Changes of the Stratospheric Circulation: Relationship to Ozone and Tropospheric Structure,” J. Clim. 15, 3673–3685 (2002).

    Google Scholar 

  12. D. T. Shindell, D. Rind, and P. Lonergan, “Increases in Polar Stratospheric Ozone Losses and Delayed Recovery Owing to Increasing Greenhouse Gas Concentrations,” Nature 392, 589–592 (1998).

    Article  Google Scholar 

  13. S. E. Strahan and A. R. Douglass, “Evaluating the Credibility of Transport Processes in the Global Modeling Initiative Simulations of Ozone Recovery,” J. Geophys. Res. 109, 110, doi: 10.1029/2003JD004238 (2004).

    Article  Google Scholar 

  14. G. C. Reinsel, “Trend Analysis of Upper Stratospheric Umkehr Ozone Data for Evidence of Turnaround,” Geophys. Res. Lett. 29, doi: 10.1029/2002GL014716 (2002).

  15. A. N. Gruzdev and I. I. Mokhov, “Quasi-Biennial Cycle in a Global Field of Total Ozone from the Data of Ground-Based Observations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 28, 475–485 (1992).

    Google Scholar 

  16. V. I. Bekoryukov, “Some Periodicities of the Total Content and Density of Ozone,” Meteorol. Gidrol., No. 2, 106–111 (1985).

  17. A. A. Chernikov, Yu. A. Borisov, V. V. Zuev, et al., “Tendencies of Changes in the Ozone Layer from Observations with TOMS Satellite Instruments and a Ground-Based Ozonometric Network,” Issled. Zemli Kosmosa, No. 6, 23–32 (2000).

  18. L. L. Hood, “The Solar Cycle Variation of Total Ozone: Dynamical Forcing in the Lower Stratosphere,” J. Geophys. Res. D 102, 1355–1370 (1997).

    Google Scholar 

  19. R. P. Kane, “Long Term Variation of Total Ozone,” Pure Appl. Geophys. 127, 143–154 (1988).

    Article  Google Scholar 

  20. K. Labitzke and H. Van Loon, “The Spatial Distribution of the Association between Total Ozone and the 11-Year Solar Cycle,” Geophys. Res. Lett. 19, 401–403 (1992).

    Google Scholar 

  21. K. Labitzke, “The Global Signal of the 11-Year Sunspot Cycle in the Atmosphere: When Do We Need the QBO?,” Meteorol. Z. 12, 209–216 (2003).

    Article  Google Scholar 

  22. J. A. Logan, D. B. A. Jones, I. A. Megretskaia, et al., “Quasibiennial Oscillation in Tropical Ozone As Revealed by Ozonesonde and Satellite Data,” J. Geophys. Res. 108, 4244, doi: 10.1029/2002JD002170 (2003).

    Article  Google Scholar 

  23. S. J. Oltmans and J. London, “The Quasi-Biennial Oscillations in Atmospheric Ozone,” J. Geophys. Res. 87, 8981–8989 (1982).

    Google Scholar 

  24. M. Shiotani, “Annual, Quasi-Biennial, and El-Niño-Southern Oscillation (ENSO) Time-Scale Variations in Equatorial Total Ozone,” J. Geophys. Res. D 97, 7625–7633 (1992).

    Google Scholar 

  25. S. A. Sitnov, “QBO Effects Manifesting in Ozone, Temperature, and Wind Profiles,” Ann. Geophys. 22, 1495–1512 (2004).

    Google Scholar 

  26. B. Soukharev, “On the Solar/QBO Effect on the Interannual Variability of Total Ozone and the Stratospheric Circulation over Northern Europe,” J. Atmos. Solar-Terr. Phys. 61, 1093–1109 (1999).

    Google Scholar 

  27. D. Shindell, D. Rind, N. Balachandran, et al., “Solar Cycle Variability, Ozone, and Climate,” Science 284, 305–308 (1999).

    Article  Google Scholar 

  28. C. S. Zerefos, K. Tourpali, B. R. Bojkov, et al., “Solar Activity-Total Column Ozone Relationships: Observations and Model Studies with Heterogeneous Chemistry,” J. Geophys. Res. D 102, 1561–1569 (1997).

    Article  Google Scholar 

  29. V. I. Bekoryukov, I. V. Bugaeva, G. R. Zakharov, et al., “Long-Period Variations in Ozone and Meteorological Parameters of the Troposphere and Stratosphere As a Consequence of Climate-Forming Centers of Atmospheric Action,” Opt. Atmos. Okeana 9, 1243–1249 (1996).

    Google Scholar 

  30. A. M. Zvyagintsev, N. E. Kadygrov, and G. M. Kruchenitskii, “Analysis of Total-Ozone Time Series from Satellite Data,” Issled. Zemli Kosmosa, No. 4, 29–37 (2003).

  31. E. A. Jadin, “Interannual Variability of Total Ozone and Stratospheric Angular Momentum,” Int. J. Geomagn. Aeron. 1, 169–180 (1999).

    Google Scholar 

  32. J. Staehelin, J. Mader, A. K. Weiss, and C. Appenzeller, “Long-Term Ozone Trends in Northern Mid-Latitudes with Special Emphasis on the Contribution of Changes in Dynamics,” Phys. Chem. Earth 27, 461–469 (2002).

    Google Scholar 

  33. S. Bronnimann, J. Luterbacher, C. Scmutz, et al., “Variability of Total Ozone at Aroza, Switzerland, since 1931 Related to Atmospheric Circulation Indices,” Geophys. Rev. Lett. 27, 2213–2216 (2000).

    Google Scholar 

  34. Y. J. Orsolini and V. Limpasuvan, “The North Atlantic Oscillation and the Occurrences of Ozone Miniholes,” Geophys. Res. Lett. 28, 4099–4102 (2001).

    Google Scholar 

  35. J. K. Angell, J. Korshover, and G. F. Cotten, “Quasibiennial Variations in the Centres of Action,” Mon. Weather Rev. 97, 867–872 (1969).

    Google Scholar 

  36. A. F. Nerushev, Effect of Intense Atmospheric Vortices on the Earth’s Ozone Layer (Gidrometeoizdat, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  37. V. F. Vasin and V. I. Vorob’ev, “On the Distribution of Total Ozone in Jet Streams,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 184, 31–34 (1967).

  38. G. P. Gushchin and N. N. Vinogradova, Total Ozone in the Atmosphere (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  39. N. F. Elansky, “On a Mechanism of the Action of Jet Streams on the Ozone Layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 11, 916–925 (1975).

    Google Scholar 

  40. A. M. Shalamyanskii and K.I. Romashkina, “Distribution and Change of Total Ozone in Different Air Masses,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 16, 1258–1265 (1980).

    Google Scholar 

  41. A. A. Krivolutsky, V. M. Kiryushov, and P. N. Vargin, “Generation of Wave Motions in the Middle Atmosphere Induced by Variations of Solar Ultraviolet Radiation Flux (Based on the UARS),” Int. J. Geomagn. Aeron. 3, 267–279 (2003).

    Google Scholar 

  42. P. Hadjinicolaou, A. Jrrar, J. Pyle, and L. Bishop, “The Dynamically-Driven Trend in Stratospheric Ozone over Northern Middle Latitudes,” Q. J. R. Meteorol. Soc. B 128, 1393–1412 (2002).

    Google Scholar 

  43. A. C. Fusco and M. L. Salby, “Interannual Variations of Total Ozone and Their Relationship to Variations of Planetary Wave Activity,” J. Clim. 12, 1619–1629 (1999).

    Article  Google Scholar 

  44. K. Petzoldt, “The Role of Dynamics in Total Ozone Deviations from Their Long-Term Mean over the Northern Hemisphere,” Ann. Geophys. 17, 231–241 (1999).

    Google Scholar 

  45. J. K. Angell, “Impact of El Chichon and Pinatubo on Ozonesonde Profiles in North Extratropics,” Geophys. Res. Lett. 25, 4485–4488 (1998).

    Article  Google Scholar 

  46. H. Lee and A. K. Smith, “Simulation of Combined Effects of Solar Cycle, Quasi-Biennial Oscillation, and Volcanic Forcing on Stratospheric Ozone Changes in Recent Decades,” J. Geophys. Res. 108, 4049, doi: 10.1029/2001JD001503 (2003).

    Google Scholar 

  47. W. J. Randel, F. Wu, J. M. Russell III, et al., “Ozone and Temperature Changes in the Stratosphere Following the Eruption of Mount Pinatubo,” J. Geophys. Res. D 100, 16753–16764 (1995).

    Article  Google Scholar 

  48. A. Robock, “Volcanic Eruptions and Climate,” Rev. Geophys. 38, 191–219 (2000).

    Article  Google Scholar 

  49. S. Solomon, R. W. Portmann, R. R. Garcia, et al., “The Role of Aerosol Variations in Anthropogenic Ozone Depletion at Northern Mid-Latitudes,” J. Geophys. Res. D 101, 6713–6727 (1996).

    Google Scholar 

  50. M. A. Nuzhdina, “Quasi-Biennial Cycle in the Indices of Geomagnetic and Solar Activity,” Geomagn. Aeron. 26, 792–798 (1986).

    Google Scholar 

  51. R. S. Steblova, “Ozone Holes Are the Result of Interaction of the Sun and Space with the Geomagnetic Field in the Earth’s Atmosphere,” Dokl. Akad. Nauk SSSR 315, 1097–2001 (1990).

    Google Scholar 

  52. A. Krivolutsky, G. Bazilevskaya, T. Vyushkova, and G. Knyazeva, “Influence of Cosmic Rays on Chemical Composition of the Atmosphere: Data Analysis and Photochemical Modelling,” Phys. Chem. Earth 27, 471–476 (2002).

    Google Scholar 

  53. J. Laštovièka, P. Križan, and K. Kudela, “Cosmic Rays and Total Ozone at Higher Middle Latitudes,” Adv. Space Res. 31, 2139–2144 (2003).

    Google Scholar 

  54. L. Makarova and A. Shirochkov, “Impact of the Solar Wind Dynamics of the Ozone Density Variations,” Adv. Space Res. 27, 2013–2018 (2001).

    Google Scholar 

  55. R. D. McPeters and C. H. Jackman, “The Response of Ozone to Solar Proton Events During Solar Cycle 21: The Observations,” J. Geophys. Res. 90, 7495–7954 (1985).

    Google Scholar 

  56. M. Sinnhuber, J. P. Burrows, M. P. Chipperfield, et al., “A Model Study of the Impact of Magnetic Field Structure on Atmospheric Composition During Solar Proton Events,” Geophys. Res. Lett. 30, 1818, doi: 10.1029/2003GL017265 (2003).

    Google Scholar 

  57. F. V. Kashin, V. N. Aref’ev, K. N. Visheratin, et al., “Results of Experimental Studies of Radiatively Active Atmospheric Constituents in Central Eurasia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 463–492 (2000) [Izv., Atmos. Ocean. Phys. 36, 425–453 (2000)].

    Google Scholar 

  58. V. K. Semyonov, V. P. Sinyakov, V. N. Aref’ev, et al., “Long-Term Ground-Based Total Ozone Measurements in the Atmosphere over Tian Shan,” in Proceedings of Quadrennial Ozone Symposium (Sapporo, 2000), pp. 635–636.

  59. V. N. Aref’ev, K. N. Visheratin, F. V. Kashin, et al., “Spectral Characteristics of Total Ozone and Vertical Temperature Distribution in the Atmosphere over Issyk Kul (Northern Tien Shan),” Proc. SPIE 5027, 51–59 (2003).

    Google Scholar 

  60. K. N. Visheratin and V. K. Semenov, “Spectral Structure of Total Ozone Variations over Issyk Kul,” in Proceedings of Quadrennial Ozone Symposium (Greece, Kos, 2004), pp. 460–461 (2004).

  61. V. K. Semenov, L. A. Spektorov, and S. S. Timofeeva, “Variations in Total Ozone over Issyk Kul,” in Atmosfernyi ozon (Nauka, Moscow, 1983), pp. 85–88 [in Russian].

    Google Scholar 

  62. NASA/Goddard Space Flight Center’s Database, http://toms.gsfc.nasa.gov.

  63. K. Brooks and N. Karuzers, “Application of Statistical Methods in Meteorology” (Gidrometeoizdat, Leningrad, 1963) [in Russian].

    Google Scholar 

  64. A. Erenberg, Analysis and Interpretation of Statistical Data (Finansy i Statistika, Moscow, 1981) [in Russian].

    Google Scholar 

  65. M. P. Baldwin, L. J. Gray, T. J. Dunkerton, et al., “The Quasi-Biennial Oscillation,” Rev. Geophys. 39, 179–229 (2001).

    Article  Google Scholar 

  66. NCEP/NCAR Reanalysis-2 Project, http:// wesley.wwb.noaa.gov.

  67. L. Bishop and W. J. Hill, “Analyzing Stratospheric Ozone for Natural and Man-Made Trend Variability,” Geophys. Res. Lett. 9, 485–488 (1982).

    Google Scholar 

  68. J. W. Krzyscin, “Interannual Changes in the Atmospheric Ozone Derived from Ground-Based Measurements,” Paper Meteorol. Geophys. 43(4), 133–164 (1992).

    Google Scholar 

  69. J. M. Harris, S. J. Oltmans, P. P. Tans, et al., “New Method for Describing Long-Term Changes in Total Ozone,” Geophys. Res. Lett. 28, 4535–4538 (2001).

    Google Scholar 

  70. V. N. Glazkov, A. I. Ivanovskii, and V. V. Fedorov, “Analysis of the Statistical Structure of Long-Term Variations in Total Ozone Fields Derived from the Ground-Based Ozonometric Network,” Izv. Akad. Nauk, Fiz. Atomos. Okeana 33, 348–359 (1997) [Izv., Atmos. Ocean. Phys. 33, 317–328 (1997)].

    Google Scholar 

  71. C. Appenzeller, A. K. Weiss, and J. Staehelin, “North Atlantic Oscillation Modulates Total Ozone Winter Trends,” Geophys. Res. Lett. 27, 1131–1134 (2000).

    Article  Google Scholar 

  72. G. M. Kruchenitskii and S. P. Perov, “Study of Global Ozonospheric Processes on the Basis of Wavelet-Analysis Techniques,” in Atlas of Temporal Variations in Natural, Anthropogenic, and Social Processes, Vol. 3, Environment, Biosphere, and Man (Yanus-K, Moscow, 2003), pp. 364–370 [in Russian].

    Google Scholar 

  73. Proceedings of Quadrennial Ozone Symposium, (Greence, Kos, 2004), http://www.qos2004.gr/proceedings.php.

  74. K. Ya. Kondrat’ev, “Global Climate Changes: Reality, Assumptions, and Fictions,” Issled. Zemli Kosmosa, No. 1, 3–23 (2002).

  75. M. I. Yudin, “On Studying the Factors Responsible for the Nonstationarity of the Atmospheric General Circulation,” in Proceedings of International Symposium on Dynamics of Large-Scale Atmospheric Processes (Nauka, Moscow, 1965), pp. 213–218 [in Russian].

    Google Scholar 

  76. I. M. Dremin, O. V. Ivanov, and V. A. Nechitailo, “Wavelets and Their Use,” Usp. Fiz. Nauk 171, 465–501 (2001).

    Google Scholar 

  77. J. Lewalle, Tutorial on Continuous Wavelet Analysis of Experimental Data (1995), http://www.ecs.syr.edu/faculty/lewalle/tutor/tutor.html.

  78. J. D. Scargle, “Studies in Astronomical Time Series Analysis. 2. Statistical Aspects of Spectral Analysis of Unevenly Spaced Data,” Astrophys. J. 263, 835–853 (1982).

    Article  Google Scholar 

  79. R. P. Kane, Y. Sahai, and N. R. Teixeira, “Maximum Entropy Spectral Analysis of Total Ozone,” Pure Appl. Geophys. 122, 747–762 (1984/1985).

    Article  Google Scholar 

  80. R. P. Kane, “Prediction Possibilities of Arosa Total Ozone,” Pure Appl. Geophys. 125, 131–145 (1987).

    Article  Google Scholar 

  81. J. K. Angell and J. Korshover, “Quasi-Biennal Variations in the Temperature, Total Ozone and Tropopause Height,” J. Atmos. Sci. 21, 479–492 (1964).

    Article  Google Scholar 

  82. M. P. Baldwin and T. J. Dunkerton, “Biennial, Quasi-Biennial, and Decadal Oscillations of Potential Vorticity in the Northern Stratosphere,” J. Geophys. Res. D 103, 3919–3928 (1998).

    Google Scholar 

  83. L. J. Gray and T. J. Dunkerton, “The Role of the Seasonal Cycle in the Quasi-Biennial Oscillation of Ozone,” J. Atmos. Sci. 47, 2429–2452 (1990).

    Article  Google Scholar 

  84. Ye. P. Borisenkov, A. V. Tsvetkov, and J. A. Eddy, “Combined Effect of Earth Orbit Perturbations and Solar Activity on Terrestrial Insolation. Part I. Sample Days and Annual Mean Values,” J. Atmos. Sci. 42, 933–940 (1985).

    Article  Google Scholar 

  85. V. V. Ivanov, “Periodic Variations in Weather and Climate,” Usp. Fiz. Nauk 172, 777–811 (2002).

    Google Scholar 

  86. M. Shiotani, “Annual, Quasi-Biennial, and El Niño-Southern Oscillation (ENSO) Time Scale Variations in Equatorial Total Ozone,” J. Geophys. Res. D 97, 7625–7633 (1992).

    Google Scholar 

  87. N. Jiang, J. D. Neelin, and M. Ghil, “Quasi-Quadrennial and Quasi-Biennial Variability in the Equatorial Pacific,” Clim. Dyn. 12(2), 101–112 (1995).

    Google Scholar 

  88. R. P. Kane, “Quasi-Biennial and Quasi-Triennial Oscillations in Geomagnetic Activity Indices,” Ann. Geophys. 15, 1581–1594 (1997).

    Google Scholar 

  89. A. S. Monin and Yu. A. Shishkov, “On a Five-Year Cycle of Global Weather,” Dokl. Akad. Nauk 358, 395–398 (1998).

    Google Scholar 

  90. M. P. Baldwin and K. Tung, “Extratropical QBO Signals in Angular Momentum and Wave Forcing,” Geophys. Res. Lett. 21, 2717–2720 (1994).

    Google Scholar 

  91. Yu. R. Rivin, “The 22-Year Cycle of Geomagnetic Activity,” Int. J. Geomagn. Aeron. 1, 111–116 (1999).

    Google Scholar 

  92. R. Abarca del Rio, D. Gambis, and D. A. Salstein, “Interannual Signals in Length of Day and Atmospheric Angular Momentum,” Ann. Geophys. 18, 347–364 (2000).

    Google Scholar 

  93. T. J. Dunkerton, “Quasi-Biennial and Subbiennial Variations of Stratospheric Trace Constituents Derived from HALOE Observations,” J. Atmos. Sci. 58, 7–25 (2001).

    Article  Google Scholar 

  94. K. N. Visheratin, “Spatial Characteristics of Total Ozone Annual Oscillation in the Tropics,” in Proceedings of the Quadrennial Ozone Symposium (Greece, Kos, 2004), pp. 458–459.

    Google Scholar 

  95. Solar-Terrestrial Influences on Weather and Climate, Ed. by B. McCormac and T. Seliga (Reidel, Dordrecht, 1979; Mir, Moscow, 1982).

    Google Scholar 

  96. K. N. Visheratin and M. M. Troyanov, “Spatial Distribution of the Amplitude of Long-Term Variations in Total Ozone from Satellite Measurements,” in Proceedings of Fourth All-Russian Conference on Physical Problems of Ecology (Ecological Physics) (MGU, Moscow, 2004), pp. 9–10 [in Russian].

    Google Scholar 

  97. W. Bohme, “A Change of Circulation Pattern in Middle Latitudes in Connection with the 26-Month Cycle,” in Proceedings of International Symposium on Dynamics of Large-Scale Atmospheric Processes (Nauka, Moscow, 1965), pp. 402–409 [in Russian].

    Google Scholar 

  98. K. Hamilton, A. Hertzog, F. Vial, and G. Stenchikov, “Longitudinal Variation of Stratospheric Quasi-Biennial Oscillation,” J. Atmos. Sci. 61, 383–402 (2004).

    Article  Google Scholar 

  99. E. Echer, “Multi-Resolution Analysis of Global Total Ozone Column,” Ann. Geophys. 22, 1487–1493 (2004).

    Google Scholar 

  100. K. N. Visheratin, “Global Maps of Total Ozone QBO from TOMS Data Set,” in Proceedings of the Quadrennial Ozone Symposium (Greece, Kos, 2004), pp. 456–457.

    Google Scholar 

  101. A. N. Gruzdev and V. A. Bezverkhnii, “Long-Term Variations in the Quasi-Biennial Oscillation of the Equatorial Stratospheric Wind,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 35, 773–785 (1999) [Izv., Atmos. Ocean. Phys. 35, 700–711 (1999)].

    Google Scholar 

  102. P. Shapiro and F. Ward, “A Neglected Cycle in Sunspot Numbers?,” J. Atmos. Sci. 19, 503–506 (1962).

    Google Scholar 

  103. R. A. Madden, “Seasonal Variations of the 40–50 Day Oscillation in the Tropics,” J. Atmos. Sci. 43, 3138–3151 (1986).

    Article  Google Scholar 

  104. Yu. I. Vitinskii, M. Kopetskii, and G. V. Kuklin, Statistics of Spot-Forming Activity of the Sun (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  105. A. B. Severnyi, “Some Problems of Solar Physics,” (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  106. C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973; Mir, Moscow, 1977).

    Google Scholar 

  107. S. Chandra, R. D. McPeters, W. Planet, and R. M. Nagatani, “The 27 Day Solar UV Response of Stratospheric Ozone; Solar Cycle 21 vs. Solar Cycle 22,” J. Atmos. Terr. Phys. 56, 1057–1065 (1994).

    Article  Google Scholar 

  108. S. Chandra, “The Solar and Dynamically Induced Oscillations in the Stratosphere,” J. Geophys. Res. D 91, 2719–2734 (1986).

    Google Scholar 

  109. B. G. Sherstyukov and V. F. Loginov, Short-Period Cyclic Variations in the Lower Atmosphere and Heliogeophysical Processes (Gidrometeoizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  110. J. R. Holton and C. Mass, “Stratospheric Vacillation Cycles,” J. Atmos. Sci. 33, 2218–2225 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.N. Visheratin, N.E. Kamenogradskii, F.V. Kashin, V.K. Semenov, V.P. Sinyakov, L.I. Sorokina, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 2, pp. 205–223.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visheratin, K.N., Kamenogradskii, N.E., Kashin, F.V. et al. Spectral-temporal structure of variations in the atmospheric total ozone in central Eurasia. Izv. Atmos. Ocean. Phys. 42, 184–202 (2006). https://doi.org/10.1134/S000143380602006X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143380602006X

Keywords

Navigation