Skip to main content
Log in

Magnetohydrodynamics of a weakly ionized plasma: Ambipolar magnetic diffusion and shock front structure

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Kinetic equations with the BGK collision integral are used to derive MHD equations for a weakly ionized plasma that are applicable over a broad range of magnetic field strengths. In strong magnetic fields, a substantial contribution to the transverse diffusion of the magnetic field comes from the ambipolar magnetic diffusion, which is associated with the motion of both the charged component and the magnetic field against the background of the neutral plasma component. The problems of the magnetic field diffusion in a weakly ionized plasma and the shock wave structure are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Avramenko, A. A. Rukhadze, and S. F. Teselkin, Pis'ma Zh. Éksp. Teor. Fiz. 34, 485 (1981) [JETP Lett. 34, 463 (1981)].

    Google Scholar 

  2. V. A. Pavlov, Fiz. Plazmy 22, 182 (1996) [Plasma Phys. Rep. 22, 167 (1996)].

    Google Scholar 

  3. M. Suzuki and J. I. Sakai, Astrophys. J. 465, 393 (1996).

    Article  ADS  Google Scholar 

  4. M. Suzuki and J. I. Sakai, Astrophys. J. 487, 921 (1997).

    Article  ADS  Google Scholar 

  5. M. Ryutova, R. Shine, A. Title, and J. I. Sakai, Astrophys. J. 492, 402 (1998).

    ADS  Google Scholar 

  6. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrocdynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).

    Google Scholar 

  7. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1963), Vol. 1.

    Google Scholar 

  8. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  9. F. H. Shu, Astrophys. J. 273, 202 (1983).

    Article  ADS  Google Scholar 

  10. L. Rudakov, Phys. Plasmas 2, 2940 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. V. Gordeev, Fiz. Plazmy 13, 1235 (1987) [Sov. J. Plasma Phys. 13, 713 (1987)].

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

    Google Scholar 

  13. Ya. B. Zel'dovich and Yu. P. Raizer, Elements of Gas Dynamics and the Classical Theory of Shock Waves (Nauka, Moscow, 1966; Academic, New York, 1968).

    Google Scholar 

  14. S. V. Bulanov and J. I. Sakai, Astrophys. J., Suppl. Ser. 117, 599 (1998).

    Article  ADS  Google Scholar 

  15. A. L. Smolyakov and I. Khabibrakhimov, Phys. Rev. Lett. 81, 4871 (1998).

    Article  ADS  Google Scholar 

  16. L. Mestel and L. Spitzer, Mon. Not. R. Astron. Soc. 116, 505 (1956).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 26, No. 6, 2000, pp. 529–537.

Original Russian Text Copyright © 2000 by Sokolov, Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, I.V., Sakai, J.I. Magnetohydrodynamics of a weakly ionized plasma: Ambipolar magnetic diffusion and shock front structure. Plasma Phys. Rep. 26, 493–501 (2000). https://doi.org/10.1134/1.952883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.952883

Keywords

Navigation