Skip to main content
Log in

Ordered dusty structures in the plasma of an RF electrodeless gas discharge

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from the experimental studies and numerical simulations of the behavior of dust grains in the plasma of an inductive RF discharge. The experiments were carried out with neon at a pressure of 25–500 Pa and with 1.87-µm melamine formaldehyde grains. The discharge was excited by a ring inductor supplied from a generator operating at a 100-MHz frequency. The effective dust-grain interaction potential used in numerical simulations involved the spatial dependence of the grain charge on the plasma floating potential, grain-interaction anisotropy resulting from the focusing of the drift ion current by the negatively charged grains, and specific features of the shielding of the dust grains by the plasma electrons and ions recombining both in the plasma bulk and on the grain surface. The results of Monte Carlo simulations show that the dust grains form specific filament structures observed experimentally in the plasma of an inductive electrodeless discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    ADS  Google Scholar 

  2. H. Thomas, G. E. Morfill, V. Demmel, et al., Phys. Rev. Lett. 73, 652 (1994).

    ADS  Google Scholar 

  3. A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A 191, 301 (1994).

    Article  ADS  Google Scholar 

  4. J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).

    Article  ADS  Google Scholar 

  5. A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757 (1996).

    Article  ADS  Google Scholar 

  6. J. E. Daugherty, M. D. Kilgore, R. K. Porteous, and D. B. Graves, J. Appl. Phys. 72, 3934 (1992).

    Article  ADS  Google Scholar 

  7. Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994).

    Google Scholar 

  8. V. E. Fortov, A. P. Nefedov, O. F. Petrov, et al., Phys. Lett. A 219, 89 (1996).

    Article  ADS  Google Scholar 

  9. V. E. Fortov, V. S. Filinov, A. P. Nefedov, et al., Zh. Éksp. Teor. Fiz. 111, 889 (1997) [JETP 84, 489 (1997)].

    Google Scholar 

  10. V. E. Fortov, A. P. Nefedov, V. M. Torchinsky, et al., Pis’ma Zh. Éksp. Teor. Fiz. 64, 86 (1996) [JETP Lett. 64, 92 (1996)].

    Google Scholar 

  11. V. E. Fortov, A. P. Nefedov, V. M. Torchinsky, et al., Phys. Lett. A 229, 317 (1997).

    Article  ADS  Google Scholar 

  12. A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, et al., Zh. Éksp. Teor. Fiz. 112, 2030 (1997) [JETP 85, 1110 (1997)].

    Google Scholar 

  13. Yu. V. Gerasimov, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov, Pis’ma Zh. Tekh. Fiz. 24 (19), 62 (1998) [Tech. Phys. Lett. 24, 774 (1998)].

    Google Scholar 

  14. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, RF Capacitive Discharge (Nauka, Moscow, 1995).

    Google Scholar 

  15. U. Kortshagen, I. Pukropski, and L. D. Tsendin, Phys. Rev. E 51, 6063 (1995).

    Article  ADS  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1970; Pergamon, Oxford, 1960).

    Google Scholar 

  17. O. A. Sinkevich and I. P. Stakhanov, Plasma Physics (Vysshaya Shkola, Moscow, 1991).

    Google Scholar 

  18. O. M. Belotserkovskii, I. E. Zakharov, A. M. Nefedov, et al., Zh. Éksp. Teor. Fiz. 115, 819 (1999) [JETP 88, 449 (1999)].

    Google Scholar 

  19. H. M. Thomas and G. E. Morfill, Nature (London) 379, 806 (1996).

    Article  ADS  Google Scholar 

  20. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Google Scholar 

  21. A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Usp. Fiz. Nauk 167, 1215 (1997) [Phys. Usp. 40, 1163 (1997)].

    Google Scholar 

  22. V. A. Schweigert, I. V. Schweigert, A. Melzer, et al., Phys. Rev. E 54, 4155 (1996).

    Article  ADS  Google Scholar 

  23. I. V. Schweigert, V. A. Schweigert, V. M. Bedanov, et al., Zh. Éksp. Teor. Fiz. 114, 1672 (1998) [JETP 87, 905 (1998)].

    Google Scholar 

  24. F. Melandso and J. Goree, Phys. Rev. E 52, 5312 (1995).

    ADS  Google Scholar 

  25. F. Melandso and J. Goree, J. Vac. Sci. Technol. A 14, 511 (1996).

    ADS  Google Scholar 

  26. V. M. Zamalin, G. E. Norman, and V. S. Filinov, Monte Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 26, No. 5, 2000, pp. 445–454.

Original Russian Text Copyright © 2000 by Zobnin, Nefedov, Sinel’shchikov, Sinkevich, Usachev, Filinov, Fortov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobnin, A.V., Nefedov, A.P., Sinel’shchikov, V.A. et al. Ordered dusty structures in the plasma of an RF electrodeless gas discharge. Plasma Phys. Rep. 26, 415–423 (2000). https://doi.org/10.1134/1.952873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.952873

Keywords

Navigation