Skip to main content
Log in

Cascade transitions in heavy hadronic hydrogen atoms

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The majority of deexcited hadronic atoms (hX) (h=K , \(\bar p\), ... and X=p, d, t) are accelerated up to energies of about 100 eV due to Coulomb transitions. The diffusion model of Stark transitions is developed. The resulting nuclear capture rate is higher than that in Bethe-Leon theory by a factor not less than five. Thus, only nonaccelerated atoms can survive. Therefore, the yield Y of Kα x rays is significantly less (by a factor of about ten) than that calculated in standard cascade models and is approximately equal to 0.2% and 1.0% for (K p) atoms at hydrogen densities of N=2 × 1021 and 5 × 1020 atom/cm3, respectively. The scheme of a more accurate calculation of Y is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Batty, Yad. Fiz. 13, 124 (1982) [Sov. J. Part. Nucl. 13, 71 (1982)].

    Google Scholar 

  2. L. I. Men’shikov, Muon Catal. Fusion 2, 173 (1988); Preprint No. IAE-4531/12 (Russian Research Centre Kurchatov Institute, Moscow, 1996).

    Google Scholar 

  3. W. Czaplinski, A. Gula, A. Kravtsov, et al., Muon Catal. Fusion 5/6, 59 (1990/91).

    Google Scholar 

  4. L. I. Ponomarev and E. A. Solov’ev, Preprint No. PSIPR-96-18 (Villigen, 1996); Pis’ma Zh. Éksp. Teor. Fiz. 68, 9 (1998) [JETP Lett. 68, 7 (1998)].

  5. J. E. Crawford, M. Daum, R. Frosch, et al., Phys. Lett. B 213, 391 (1988); Phys. Rev. D 43, 46 (1991).

    ADS  Google Scholar 

  6. E. C. Aschenauer, K. Gabathuler, P. Hauser, et al., Phys. Rev. A 51, 1965 (1995).

    Article  ADS  Google Scholar 

  7. T. B. Day, G. A. Snow, and J. Sucher, Phys. Rev. Lett. 3, 61 (1959).

    Article  ADS  Google Scholar 

  8. M. Leon and H. A. Bethe, Phys. Rev. 127, 636 (1962).

    Article  ADS  Google Scholar 

  9. J. L. Vermeulen, Nucl. Phys. B 12, 506 (1969).

    Article  ADS  Google Scholar 

  10. V. S. Lisitsa and G. V. Sholin, Zh. Éksp. Teor. Fiz. 61, 912 (1971) [Sov. Phys. JETP 34, 484 (1971)].

    Google Scholar 

  11. Yu. N. Demkov, V. N. Ostrovsky, and E. A. Solovjev, Zh. Éksp. Teor. Fiz. 66, 125 (1974) [Sov. Phys. JETP 39, 57 (1974)].

    Google Scholar 

  12. V. A. Abramov, F. F. Baryshnikov, and V. S. Lisitsa, Zh. Éksp. Teor. Fiz. 74, 897 (1978) [Sov. Phys. JETP 47, 469 (1978)].

    Google Scholar 

  13. A. K. Kazansky and V. N. Ostrovsky, Phys. Rev. A 52, R 1811 (1995)

    Article  ADS  Google Scholar 

  14. R. W. Pauli, Lectures in Atomic Mechanics (Nauka, Moscow, 1965).

    Google Scholar 

  15. L. I. Men’shikov and L. I. Ponomarev, Z. Phys. D 2, 1 (1986).

    Google Scholar 

  16. R. Baldini, S. Bianco, F. L. Fabbri, et al., DEAR Proposal. LNF-95/055 (IR) (Frascati, 1995).

  17. T. P. Terada and R. S. Hayano, Phys. Rev. C 55, 73 (1997).

    Article  ADS  Google Scholar 

  18. M. Iwasaki, R. S. Hayano, T. M. Ito, et al., Phys. Rev. Lett. 78, 3067 (1997).

    ADS  Google Scholar 

  19. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1987; Pergamon, Oxford, 1981).

    Google Scholar 

  20. G. Raifenrother and E. Klempt, Nucl. Phys. A 503, 885 (1989).

    ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975; 6th ed., Nauka, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 63, No. 5, 2000, pp. 920–928.

Original English Text Copyright © 2000 by Men’shikov.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Men’shikov, L.I. Cascade transitions in heavy hadronic hydrogen atoms. Phys. Atom. Nuclei 63, 850–858 (2000). https://doi.org/10.1134/1.855716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.855716

Keywords

Navigation