Skip to main content
Log in

Trapped Bose condensate in a gravitational field

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The Bose condensation of atoms in finite 1D and 2D parabolic traps placed in a gravitational field is considered. The distortion of the trap potential in this field is modeled by a combination of two rectangular 1D and 2D traps. The change in the critical temperature T c is found with regard to the cutoff and renormalization of the spectrum of these model potentials. The shift of the critical temperature T c in the gravitational field is calculated. The shift sign and magnitude depend on the way of introducing the gravitational field. For a certain choice, three critical temperatures can be sequentially observed. These temperatures can be attributed to three Bose condensations that occur in the cyclic motion of the trap along the Earth (I)-space (II)-Earth (III) route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. S. Wong, P. A. Crowell, H. A. Cho, and J. D. Reppy, Phys. Rev. Lett. 65, 2410 (1990).

    ADS  Google Scholar 

  2. K. Huang and H.-F. Meng, Phys. Rev. Lett. 69, 644 (1992).

    Article  ADS  Google Scholar 

  3. V. Sa-Yakanit, V. Yarunin, and P. Nisameneephong, Phys. Lett. A 237, 152 (1998).

    Article  ADS  Google Scholar 

  4. Proceedings of the International Symposium on Low Temperature Physics, St. Petersburg, 1999.

  5. K. Huang, cond-mat/9904027 (1999).

  6. G. Baym, J.-P. Blaziot, and J. Zinn-Justin, cond-mat/9907241 (1999).

  7. V. Bagnato, D. Pritchard, and D. Kleppner, Phys. Rev. A 35, 4354 (1987).

    Article  ADS  Google Scholar 

  8. K. B. Davis, M. O. Mewes, M. R. Andrews, et al., Phys. Rev. Lett. 75, 3969 (1995).

    ADS  Google Scholar 

  9. M. O. Mewes, M. R. Andrews, N. J. van Druten, et al., Phys. Rev. Lett. 77, 416 (1996).

    ADS  Google Scholar 

  10. K. Damle, T. Senthil, S. Majumdar, and S. Sachdev, Europhys. Lett. 36, 7 (1996).

    Article  ADS  Google Scholar 

  11. L. Pitaevskii, Usp. Fiz. Nauk 168, 641 (1998) [Phys. Usp. 41, 569 (1998)]; cond.-mat/9806038 (1998).

    Google Scholar 

  12. Roadmap on Fundamental Physics in Space, Preprint JPL 400–808, 4/99, NASA (1999).

  13. V. Yarunin, Teor. Mat. Fiz. 96, 37 (1993); 109, 295 (1996); V. Yarunin and L. Siurakshina, Physica A (Amsterdam) 215, 261 (1995); V. Yarunin, Teor. Mat. Fiz. 119, 308 (1999); Fiz. Nizk. Temp. 24, 176 (1998) [Low Temp. Phys. 24, 130 (1998)].

    Google Scholar 

  14. V. Yarunin and D. Baranov, Preprint JINR E17-99-172; J. Low Temp. Phys. (2000) (in press).

  15. N. N. Bogolyubov, Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 77 (1947).

    MathSciNet  Google Scholar 

  16. V. N. Popov and L. D. Faddeev, Zh. Éksp. Teor. Fiz. 47, 1315 (1964) [Sov. Phys. JETP 20, 890 (1964)].

    Google Scholar 

  17. S. Flugge, Practical Quantum Mechanics (Springer-Verlag, New York, 1971), Vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 71, No. 6, 2000, pp. 384–390.

Original Russian Text Copyright © 2000 by Baranov, Yarunin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, D.B., Yarunin, V.S. Trapped Bose condensate in a gravitational field. Jetp Lett. 71, 266–270 (2000). https://doi.org/10.1134/1.568331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.568331

PACS numbers

Navigation