Skip to main content
Log in

Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transitions

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The expansion of an instantly heated planar layer of condensed matter into a vacuum is investigated. It is shown that, as the result of a phase transition, a liquid shell characterized by a constant density and filled with matter in a two-phase state is formed in a rarefaction wave. By measuring the velocity of the shell and its density and mass, it is possible to obtain important information about the behavior of matter in the near-critical region of the phase diagram, where both experimental and theoretical investigations are complicated. Problems associated with the kinetics of the phase transition in rarefaction waves are investigated in detail. This investigation is based on a direct computer simulation of the dynamics of atoms and is free from any assumptions usually used in phenomenologically describing the fluctuation kinetics of the liquid-vapor transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, et al., Proc. SPIE 3343, 46 (1998).

    ADS  Google Scholar 

  2. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, Appl. Surf. Sci. 127–129, 755 (1998).

    Google Scholar 

  3. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, et al., Phys. Rev. Lett. 81, 224 (1998).

    ADS  Google Scholar 

  4. S. I. Anisimov, Zh. Éksp. Teor. Fiz. 54, 339 (1968) [Sov. Phys. JETP 27, 182 (1968)].

    Google Scholar 

  5. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Effect of High-Power Radiation on Metals (Nauka, Moscow, 1970).

    Google Scholar 

  6. S. I. Anisimov and B. Rethfeld, Proc. SPIE 3093, 192 (1997).

    ADS  Google Scholar 

  7. N. A. Inogamov, Yu. V. Petrov, S. I. Anisimov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 284 (1999) [JETP Lett. 69, 310 (1999)].

    Google Scholar 

  8. S. I. Anisimov, N. A. Inogamov, A. M. Oparin, et al., Appl. Phys. A 69, 617 (1999).

    Article  ADS  Google Scholar 

  9. N. A. Inogamov, S. I. Anisimov, and B. Rethfeld, Zh. Éksp. Teor. Fiz. 115, 2091 (1999) [JETP 88, 1143 (1999)].

    Google Scholar 

  10. V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].

    Google Scholar 

  11. S. I. Anisimov, D. O. Dunikov, S. P. Malyshenko, and V. V. Zhakhovskii, J. Chem. Phys. 110, 8722 (1999).

    Article  ADS  Google Scholar 

  12. F. H. Ree, J. Chem. Phys. 73, 5401 (1980).

    ADS  Google Scholar 

  13. B. Smit, J. Chem. Phys. 96, 8639 (1992).

    Article  ADS  Google Scholar 

  14. S. Toxvaerd, Phys. Rev. E 58, 704 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 71, No. 4, 2000, pp. 241–248.

Original Russian Text Copyright © 2000 by Zhakhovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Nishihara, Anisimov, Inogamov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhakhovskii, V.V., Nishihara, K., Anisimov, S.I. et al. Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transitions. Jetp Lett. 71, 167–172 (2000). https://doi.org/10.1134/1.568306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.568306

PACS numbers

Navigation