Skip to main content
Log in

Fermionic atom laser

  • Atoms, Spectra and Radiation
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

An output coupling of a magnetically trapped two-species Fermi gas to a untrapped species is considered which can be implemented using rf or optical Raman transitions. The process can be used to produce an intense output beam of fermionic atoms once the device reaches a threshold in the zero-temperature case. For finite temperatures there is no threshold, as the output current grows smoothly. This behavior, which is reminiscent of conventional optical and cavity-QED lasers, suggests the name fermionic atom laser for this device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995); K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995); C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995); 79, 1170 (1997).

    ADS  Google Scholar 

  2. B. DeMarco, J. L. Bohn, J. P. Burke, Jr., M. Holland, and D. S. Jin, http://xxx.lanl.gov/abs/cond-mat/9812350; F. S. Cataliotti, E. A. Cornell, C. Fort, M. Inguscio, F. Marin, M. Prevedelli, L. Ricci, and G. M. Tino, Phys. Rev. A 57, 1136 (1998); E. R. I. Abraham, W. I. McAlexander, J. M. Gerton, R. G. Hulet, R. Cote, and A. Dalgarno, Phys. Rev. A 55, R3299 (1997).

  3. H. T. C. Stoof, M. Houbiers, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 76, 10 (1996); M. Houbiers, R. Ferwerda, H. T. C. Stoof, W. I. McAlexander, C. A. Sackett, R. G. Hulet, Phys. Rev. A 56, 4864 (1997); M. Houbiers and H. T. C. Stoof, Phys. Rev. A 59, 1556 (1999); M. Houbiers, H. T. C. Stoof, W. I. McAlexander, R. G. Hulet, Phys. Rev. A 57, R1497 (1998); G. Bruun, Y. Castin, R. Dum, and K. Burnett, http://xxx.lanl.gov/abs/cond-mat/9810013.

    Article  ADS  Google Scholar 

  4. M. A. Baranov, Yu. Kagan, M. Yu. Kagan, JETP Lett. 64, 301 (1996); M. A. Baranov and D. S. Petrov, Phys. Rev. A 58, R801 (1998); M. A. Baranov, http://xxx.lanl.gov/abs/cond-mat/9801142; M. A. Baranov and D. S. Petrov, http://xxx.lanl.gov/abs/cond-mat/9901108.

    ADS  Google Scholar 

  5. H. M. Wiseman and M. J. Collett, Phys. Lett. A 202, 246 (1995); R. J. C. Spreeuw, T. Pfau, U. Janicke, M. Wilkens, Europhys. Lett. 32, 469 (1995); M. Olshanii, Y. Castin, and J. Dalibard, Proceedings of the 12th International Conference on Laser Spectroscopy, edited by M. Inguscio, M. Allegrini, and A. Lasso (World Scientific, Singapore, 1995); M. Holland, K. Burnett, C. Gardiner, J. I. Cirac, P. Zoller, Phys. Rev. A 54, R1757 (1996); A. M. Guzman, M. Moore, P. Meystre, Phys. Rev. A 53, 977 (1996); H. Wiseman, A. Martins, and D. Walls, Quantum Semiclassic. Opt. 8, 737 (1996); G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A 55, 3631 (1997); M. Naraschewski, A. Schenzle, and H. Wallis, Phys. Rev. A 56, 603 (1997); H. Steck, M. Naraschewski, and H. Wallis, Phys. Rev. Lett. 80, 1 (1998); B. Jackson, J. F. McCann, and C. S. Adams, http://xxx.lanl.gov/abs/cond-mat/9804038.

    Article  ADS  Google Scholar 

  6. M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, Phys. Rev. Lett. 78, 582 (1997).

    Article  ADS  Google Scholar 

  7. A. N. Oraevskii, JETP Lett. 65, 459 (1997).

    Article  ADS  Google Scholar 

  8. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996).

    ADS  Google Scholar 

  9. N. S. Ananikian and K. G. Petrosyan, Phys. Lett. A 236, 84 (1997).

    Article  ADS  Google Scholar 

  10. P. R. Rice and H. J. Carmichael, Phys. Rev. A 50, 4318 (1994); and references therein.

    ADS  Google Scholar 

  11. G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A 59, 667 (1999).

    Article  ADS  Google Scholar 

  12. L. Diosi, N. Gisin, and W. T. Strunz, Phys. Rev. A 58, 1699 (1998); W. T. Strunz, L. Diosi, N. Gisin, Phys. Rev. Lett. 82, 1801 (1999).

    ADS  MathSciNet  Google Scholar 

  13. M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett. 8, 316 (1962).

    Article  ADS  Google Scholar 

  14. G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1981).

    Google Scholar 

  15. R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, Mass., 1998).

    Google Scholar 

  16. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).

    Google Scholar 

  17. V. I. Rupasov, Phys. Rev. Lett. 80, 3368 (1998); Phys. Lett. A 237, 80 (1997).

    Article  ADS  Google Scholar 

  18. C. C. Gerry, Phys. Rev. B 57, 7474 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 70, No. 1, 13–17 (10 July 1999)

Published in English in the original Russian journal. Edited by Steve Torstveit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrosyan, K.G. Fermionic atom laser. Jetp Lett. 70, 11–16 (1999). https://doi.org/10.1134/1.568122

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.568122

PACS numbers

Navigation