Skip to main content
Log in

The correction-to-scaling exponent in dilute systems

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The leading correction-to-scaling exponent ω for the three-dimensional (3D) dilute Ising model is calculated in the framework of the field theoretic renormalization group approach. Both in the minimal subtraction scheme and in the massive field theory (resummed four-loop expansion) excellent agreement with recent Monte Carlo calculations (H. G. Ballesteros et al., Phys. Rev. B 58, 2740 (1998)) is achieved. The expression of ω as a series in a \(\sqrt \varepsilon \) expansion up to O2) does not permit a reliable estimate for d=3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Wegner, Phys. Rev. B 5, 4529 (1972).

    Article  ADS  Google Scholar 

  2. H. Kleinert and V. Schulte-Frohlinde, Phys. Lett. B 342, 284 (1995).

    ADS  Google Scholar 

  3. A. B. Harris, J. Phys. C 7, 1671 (1974).

    ADS  Google Scholar 

  4. J. T. Chayes, L. Chayes, D. S. Fisher et al., Phys. Rev. Lett. 57, 2999 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. P. Landau, Phys. Rev. B 22, 2450 (1980); J. Marro, A. Labarta, and J. Tejada, Phys. Rev. B 34, 347 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  6. J.-S. Wang and D. Chowdhury, J. Phys. France 50, 2905 (1989); J.-S. Wang, M. Wohlert, H. Muhlenbein et al., Physica A 166, 173 (1990); H.-O. Heuer, Europhys. Lett. 12, 551 (1990); H.-O. Heuer, Phys. Rev. B 42, 6476 (1990); H.-O. Heuer, J. Phys. A 26, L333 (1993).

    Google Scholar 

  7. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor et al., Phys. Rev. B 58, 2740 (1998).

    ADS  Google Scholar 

  8. S. Wiseman and E. Domany, Phys. Rev. Lett. 81, 22 (1998); Phys. Rev. E 58, 2938 (1998).

    ADS  Google Scholar 

  9. K. E. Newman and E. K. Riedel, Phys. Rev. B 25, 264 (1982).

    ADS  Google Scholar 

  10. J. Jug, Phys. Rev. B 27, 609 (1983).

    ADS  Google Scholar 

  11. H. K. Janssen, K. Oerding, and E. Sengespeick, J. Phys. A 28, 6073 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Grinstein and A. Luther, Phys. Rev. B 13, 1329 (1976); T. C. Lubensky, Phys. Rev. B 11, 3573 (1975).

    Article  ADS  Google Scholar 

  13. G. Parisi, Proceedings of the Cargèse Summer School 1973 (unpublished); J. Stat. Phys. 23, 49 (1980).

  14. G. t’Hooft and M. Veltman, Nucl. Phys. B 44, 189 (1972).

    ADS  Google Scholar 

  15. R. Schloms and V. Dohm, Europhys. Lett. 3, 413 (1987); Nucl. Phys. B 328, 639 (1989).

    ADS  Google Scholar 

  16. I. O. Mayer, A. I. Sokolov, and B. N. Shalaev, Ferroelectrics 95, 93 (1989); I. O. Mayer, J. Phys. A 22 2815 (1989).

    Google Scholar 

  17. G. B. Baker, B. G. Nickel, and D. I. Meiron, Phys. Rev. B 17, 1365 (1978).

    Article  ADS  Google Scholar 

  18. H. Kleinert, J. Neu, V. Schulte-Frohlinde et al., Phys. Lett. B 272, 39 (1991); Phys. Lett. B 319, 545(E) (1993).

    ADS  Google Scholar 

  19. A. J. Bray, T. McCarthy, M. A. Moore et al., Phys. Rev. B 36, 2212 (1987); A. J. McKane, Phys. Rev. B 49, 12003 (1994).

    ADS  Google Scholar 

  20. P. J. S. Watson, J. Phys. A 7, L167 (1974).

    Article  ADS  MATH  Google Scholar 

  21. J. S. R. Chisholm, Math. Comput. 27, 841 (1973).

    MATH  MathSciNet  Google Scholar 

  22. R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  23. C. F. Baillie, R. Gupta, K. A. Hawick et al., Phys. Rev. B 45, 10438 (1992).

  24. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor et al., J. Phys. A 32, 1 (1999).

    ADS  Google Scholar 

  25. R. Folk, Yu. Holovatch, and T. Yavors’kii, J. Phys. Stud. 2, 213 (1998) and unpublished.

    Google Scholar 

  26. A. Aharony, A. B. Harris, and S. Wiseman, Phys. Rev. Lett. 81, 252 (1998).

    Article  ADS  Google Scholar 

  27. D. E. Khmel’nitskii, Zh. Éksp. Teor. Fiz. 68, 1960 (1975) [Sov. Phys. JETP 41, 981 (1975)].

    Google Scholar 

  28. B. N. Shalaev, S. A. Antonenko, and A. I. Sokolov, Phys. Lett. A 230, 105 (1997).

    Article  ADS  Google Scholar 

  29. Up to O(ɛ) we recover the result of C. Jayaprakash and H. J. Katz, Phys. Rev. B 16, 3987 (1977), the \(\sqrt \varepsilon \) term is twice as large as in B. N. Shalaev, Zh. Éksp. Teor. Fiz. 73, 2301 (1977) [Sov. Phys. JETP 46, 1204 (1977)].

    Article  ADS  Google Scholar 

  30. R. B. Griffith, Phys. Rev. Lett. 23, 17 (1969).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 69, No. 10, 698–702 (25 May 1999)

Published in English in the original Russian journal. Edited by Steve Torstveit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folk, R., Holovatch, Y. & Yavors’kii, T. The correction-to-scaling exponent in dilute systems. Jetp Lett. 69, 747–752 (1999). https://doi.org/10.1134/1.568085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.568085

PACS numbers

Navigation