Does the Unruh effect exist?

An Erratum to this article was published on 01 November 1997

Abstract

It is shown that quantization on the Fulling modes presupposes that the field vanishes on the spatial boundaries of the Rindler manifold. For this reason, Rindler space is physically unrelated with Minkowski space and the state of a Rindler observer cannot be described by the equilibrium density matrix with the Fulling-Unruh temperature. Therefore it is pointless to talk about an Unruh effect. The question of the behavior of an accelerated detector in the physical formulation of the problem remains open.

This is a preview of subscription content, access via your institution.

References

  1. 1

    W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    ADS  Google Scholar 

  2. 2

    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge University Press, New York, 1982.

    Google Scholar 

  3. 3

    W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer-Verlag, New York, 1985.

    Google Scholar 

  4. 4

    V. L. Ginzburg and V. P. Frolov, Usp. Fiz. Nauk 153, 633 (1987) [Sov. Phys. Usp. 30, 1073 (1987)].

    Google Scholar 

  5. 5

    A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields [in Russian], Énergoizdat, Moscow, 1988.

    Google Scholar 

  6. 6

    R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, Chicago University Press, Chicago, 1994.

    Google Scholar 

  7. 7

    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    MathSciNet  Google Scholar 

  8. 8

    S. A. Fulling, Phys. Rev. D 7, 2850 (1973).

    Article  ADS  Google Scholar 

  9. 9

    A. I. Nikishov and V. I. Ritus, Zh. Éksp. Teor. Fiz. 94, 31 (1988) [Sov. Phys. JETP 67, 1313 (1988)].

    Google Scholar 

  10. 10

    D. G. Boulware, Phys. Rev. D 11, 1404 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  11. 11

    R. Peierls, Surprises in Theoretical Physics, Princeton University Press, Princeton, 1979.

    Google Scholar 

  12. 12

    V. L. Ginzburg, Theoretical Physics and Astrophysics, Pergamon Press, New York, 1979 [Russian original, Nauka, Moscow, 1981].

    Google Scholar 

  13. 13

    Ya. B. Zel’dovich, L. V. Rozhanskii, and A. A. Starobinskii, JETP Lett. 43, 523 (1986).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 65, No. 12, 861–866 (25 June 1997)

An erratum to this article is available at http://dx.doi.org/10.1134/1.567583.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belinskii, V.A., Karnakov, B.M., Mur, V.D. et al. Does the Unruh effect exist?. Jetp Lett. 65, 902–908 (1997). https://doi.org/10.1134/1.567447

Download citation

PACS numbers

  • 03.70.+k
  • 04.60.−m