Collision of a comet with Jupiter: Determination of fragment penetration depths from the molecular spectra

  • A. A. Berezhnoi
  • V. V. Shevchenko
  • B. A. Klumov
  • V. E. Fortov
Gravity, Astrophysics


After the fragments of comet Shoemaker-Levy 9 fell onto Jupiter, some molecules which were formed as a result of chemical reactions in the shock-compressed gas during the explosion of the comet fragments and ejected into the upper atmosphere by the shock wave were observed in the upper atmosphere. As the initially hot gas expanded, these molecules were quenched. Therefore they represent a kind of “memory” of the shock processes which occurred in the region of generation of the strong shock wave. The radiation from such molecules was registered by both ground-based observers and the Hubble space telescope. In the present paper we estimate the penetration depth and energy of the largest comet fragments on the basis of data on the content of shock-synthesized molecules in Jupiter’s upper atmosphere.


Radiation Spectroscopy Atmosphere State Physics Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Ivlev, B. A. Klumov, and V. E. Fortov, JETP Lett. 61, 431 (1995).ADSGoogle Scholar
  2. 2.
    K. Zahnle and M. M. MacLow J. Geophys. Res. (1996), in press.Google Scholar
  3. 3.
    Th. Encrenaz, R. Schulz, J. A. Stuwe et al., ESO SL9 Proceedings, 1995, p. 215.Google Scholar
  4. 4.
    R. West, ESO Messenger 77, 28 (1994).Google Scholar
  5. 5.
    D. Bockelee-Morvan, E. Lellouch, P. Colom et al., ESO SL9 Proceedings, 1995, p. 251.Google Scholar
  6. 6.
    D. Gautier, A. Marten, M. J. Griffith et al., Ibid., p. 257.Google Scholar
  7. 7.
    L. S. Orton, Ibid., p. 123.Google Scholar
  8. 8.
    K. S. Noll, M. A. Mcgrath, L. M. Trafton, et al., Science 267, 1307 (1995).ADSGoogle Scholar
  9. 9.
    M. Roos-Serote, A. Borucci, J. Crovisier et al., Geophys. Res. Lett. 22, 1621 (1995).CrossRefADSGoogle Scholar
  10. 10.
    H. A. Weaver, M. F. A’Hearn, C. Arpigny et al., Science 267, 1282 (1995).ADSGoogle Scholar
  11. 11.
    K. Zahnle and M. M. MacLow, Icarus 108, 1282 (1995).Google Scholar
  12. 12.
    A. S. Kompaneets Dokl. Akad. Nauk SSSR 130, 1001 (1960) [Sov. Phys. Dokl. 5, 46 (1960)].zbMATHGoogle Scholar
  13. 13.
    B. J. Fegley and K. Lodders, Icarus 110, 117 (1995).ADSGoogle Scholar
  14. 14.
    V. K. Gryaznov, B. A. Ivanov, A. V. Ivlev et al., Moon, Earth, and Planets 66, 99 (1994).ADSGoogle Scholar
  15. 15.
    M. B. Boslough, D. A. Crawford, A. C. Robinson et al., Geophys. Res. Lett. 21, 1555 (1994).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • A. A. Berezhnoi
    • 1
  • V. V. Shevchenko
    • 1
  • B. A. Klumov
    • 2
  • V. E. Fortov
    • 3
  1. 1.Shternberg State InstituteMoscowRussia
  2. 2.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia
  3. 3.Scientific-Research Center of the Thermal Physics of Impulsive ActionsMoscowRussia

Personalised recommendations