Skip to main content
Log in

Collective defect formation in the high-temperature superconductor YBa2Cu3O7 under the influence of adsorbed water molecules

  • Solids: Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The mechanisms for defect formation stimulated by the adsorption of water molecules in the surface of YBa2Cu3O7 ceramic are studied, together with the types of defects and their distributions. It is found that a water layer physically bound to the surface reduces the rates of annihilation and capture of positrons, changes the amount of barium and copper on the surface by a factor of two, and inhibits diffusive jumps of nickel atoms. A layer of adsorbed water excites subthreshold formation of 1021 cm−3 interstitial Ba and Cu1 atoms and transitions of oxygen from O1 to O5, and vice versa in the volume of crystallites, and the migration of defects and accumulation of Ba atoms in the surface layer, which block diffusive jumps of Ni within the volume of the crystals. These effects are related to the excitation of collective, low-frequency weakly damped motion of heavy holes in the crystal volume when defects are formed on the surface by physically adsorbed H2O molecules, which is accompanied by Coulomb repulsion of cations from intermediate layers into interstitials and the migration of defects in the field of the collective excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ruvalds, Phys. Rev. B 35, 8869 (1987).

    Article  ADS  Google Scholar 

  2. A. Griffin and J. Pinder, Phys. Rev. B 39, 11503 (1989).

  3. V. Z. Kresin, Phys. Rev. B 35, 8716 (1987).

    Article  ADS  Google Scholar 

  4. J. Ashkenazi, C. J. Kuper, and P. Tyk, Solid State Commun. 63, 1145 (1987).

    Article  Google Scholar 

  5. É. A. Pashitskii, Fiz. Nizk. Temp. 21, 995 (1995) [Low Temp. Phys. 21, 763 (1995)].

    Google Scholar 

  6. É. A. Pashitskii, Fiz. Nizk. Temp. 21, 1091 (1995) [Low Temp. Phys. 21, 837 (1995)].

    Google Scholar 

  7. M. M. Klinger, Ch. V. Lushchik, T. V. Mashovets et al., Usp. Fiz. Nauk 147, 523 (1985) [Sov. Phys. Usp. 28, 994 (1985)].

    Google Scholar 

  8. H. Krakauer and W. P. Pickett, Phys. Rev. B 37, 7252 (1987).

    Google Scholar 

  9. A. J. Freeman and J. Yu, Helv. Phys. Acta 61, 401 (1988).

    Google Scholar 

  10. M. Hirao, T. Uda, and Y. Murayama, Physica C 195, 230 (1992).

    Article  ADS  Google Scholar 

  11. Rong Liu, B. W. Veal, A. P. Paulioas et al., Phys. Rev. B 45, 5614 (1992).

    ADS  Google Scholar 

  12. Yu. A. Izyumov, N. M. Plakida, and Yu. N. Skryabin, Usp. Fiz. Nauk 153, 621 (1989) [Sov. Phys. Usp. 32, 1060 (1989)].

    Google Scholar 

  13. V. A. Arbuzov, O. M. Bakunin, V. B. Vykhodets et al., Sverkhprovodimost: Fiz., Khim., Tekh. 4, 2410 (1991).

    Google Scholar 

  14. V. I. Nefedov, A. N. Sokolov, M. A. Tyzikhov et al., Poverkhnost’,, No. 9, 22 (1989).

  15. V. M. Nefedov and A. N. Sokolov, ZhNKh 36, 2723 (1989).

    Google Scholar 

  16. E. A. Eremina, N. N. Oleinikov, V. I. Nefedov, and A. N. Sokolov, ZhVKhO 34, 528 (1989).

    Google Scholar 

  17. M. V. Pulyaeva, N. S. Granova, Yu. N. Velikhov, and V. V. Usenkova, Preprint IMK-92-13, Kharkov (1992).

  18. A. Barkatt, H. Hujaji, R. W. Vasantha et al., MRS Bull., September, 45 (1993).

  19. M. U. Kalanov, M. Karimov, M. S. Paizulakhanov et al., Uzb. Fiz. Zhurn., No. 2, 56 (1993).

  20. S. Wen, X. Song, and J. Feng, Mater. Lett. 6, 385 (1988).

    Article  Google Scholar 

  21. B. M. Gorelov, V. V. Dyakin, G. N. Kashin et al., J. Electron Spectrosc. Relat. Phenom. 70, 161 (1994).

    Article  Google Scholar 

  22. P. Turelici, A. L. Wach, R. K. Welzler et al., J. Phys.: Condens. Matter 2, 1635 (1990).

    ADS  Google Scholar 

  23. V. G. Bar’yakhtar, A. K. Zalko-Titarenko, V. S. Melnikov et al., Int. J. Mod. Phys. B 1, 1259 (1988).

    ADS  Google Scholar 

  24. K. Ikeda, M. Nagata, M. Ishika et al., Jpn. J. Appl. Phys., Part 2 27, L202 (1988).

    Article  Google Scholar 

  25. A. K. Zhalko-Titarenko, V. S. Mikhalenkov, A. E. Morozovskii et al., Sverkhprovodimost: Fiz., Khim., Tekh. 3, 948 (1990).

    Google Scholar 

  26. V. N. Lysenko, V. T. Adonkin, V. V. Dyakin et al., Sverkhprovodimost: Fiz., Khim., Tekh. 5, 344 (1992).

    Google Scholar 

  27. D. C. Connors and R. N. West, Phys. Rev. Lett. A 30, 24 (1969).

    ADS  Google Scholar 

  28. A. G. Merzhanov, A. V. Makarov, G. V. Romanov et al., Pis’ma Zh. Tekh. Fiz. 15(11), 4 (1989) [Sov. Tech. Phys. Lett. 15, 414 (1989)].

    Google Scholar 

  29. Y. Gao, T. J. Wagener, J. H. Weaver et al., Phys. Rev. B 36, 3971 (1987).

    ADS  Google Scholar 

  30. B. I. Boltaks, Diffusion in Semiconductors, Infosearch, London (1963) [Russian orig. Fizmatgiz, Moscow (1961), 167 pp.].

    Google Scholar 

  31. P. P. Gorbik, V. V. Dyakin, V. V. Zaitov et al., Sverkhprovodimost: Fiz., Khim., Tekh. 3, 1654 (1990).

    Google Scholar 

  32. T. Marimoto and T. Ywaki, J. Chem. Soc., Faraday Trans. 2 83, 943 (1987).

    Google Scholar 

  33. G. N. Zatsepina, Physical Properties and Structure of Water, Izd-vo. MGU, Moscow (1987) [in Russian].

    Google Scholar 

  34. R. C. Baezoed, Phys. Rev. B 42, 56 (1990).

    ADS  Google Scholar 

  35. N. N. Degtyarenko, V. F. Elesin, and V. L. Mel’nikov, Sverkhprovodimost: Fiz., Khim., Tekh. 3, 2516 (1990).

    Google Scholar 

  36. V. V. Kirsanov, N. N. Musin, and E. I. Shamarina, Sverkhprovodimost: Fiz., Khim., Tekh. 7, 427 (1994).

    Google Scholar 

  37. P. A. Sterne, J. H. Kaiser, J. C. O’Brien, and R. H. Howell, Mater. Sci. Forum 105–110, 469 (1992).

    Google Scholar 

  38. E. Boronski and R. N. Nieminen, Phys. Rev. B 34, 3820 (1986).

    ADS  Google Scholar 

  39. D. M. Ginzberg, ed., Physical Properties of High Temperature Superconductors, World Scientific, Singapore (1989) [Russian transl. Mir, Moscow (1990)].

    Google Scholar 

  40. R. C. Baezoed, Phys. Rev. B 38, 11304 (1988).

    Google Scholar 

  41. V. T. Adonkin, B. M. Gorelov, D. V. Morozovska, and V. M. Ogenko, Colloids Surf., A 101, 233 (1995).

    Article  Google Scholar 

  42. P. A. Bulenkov, Yu. V. Zherdev, V. V. Palin et al., Khim. Fiz. No. 1, 126 (1983).

  43. W. Swiatkowski, Acta Universitatis, Matematyka, Fizyka, Astronomia, No. 39, 3 (1982).

  44. V. T. Adonkin, V. V. Dyakin, V. M. Ogenko, and A. A. Chuiko, React. Kinet. Catal. Lett. 50, 227 (1993).

    Google Scholar 

  45. V. T. Adonkin, B. V. Alekseenko, A. P. Galushka et al., Fiz. Tverd. Tela 35, 1427 (1993) [Phys. Solid State 35, 720 (1993)].

    Google Scholar 

  46. N. H. Tec, M. B. Salamon, I. Datta et al., Phys. Rev. B 45, 5628 (1992).

    ADS  Google Scholar 

  47. J. Buan, B. P. Stoikovic, N. Israeloff et al., Phys. Rev. B 54, 7462 (1996).

    Article  ADS  Google Scholar 

  48. A. G. Grachev, Sverkhprovod. Fiz. Khim. Tekh. 3, 2516 (1990).

    Google Scholar 

  49. D. P. Timofeev, Adsorption Kinetics [in Russian], Izd. AN SSSR, Moscow (1962).

    Google Scholar 

  50. R. N. Meals and F. M. Lemis, Silicones, Reinhold Publ. Corp., New York (1963).

    Google Scholar 

  51. M. M. Dubinin and V. V. Serpinskaya, eds., Adsorption in Micropores [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  52. P. P. Gorbik, B. M. Gorelov, V. V. Dyakin et al., Ukr. Fiz. Zh. 38, 84 (1993).

    Google Scholar 

  53. A. A. Smirnov, Theory of Diffusion in Implantation Alloys [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  54. W. Seith, Diffusion in Metallen, Springer Verlag, Berlin (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 116, 586–603 (August 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelov, B.M. Collective defect formation in the high-temperature superconductor YBa2Cu3O7 under the influence of adsorbed water molecules. J. Exp. Theor. Phys. 89, 311–320 (1999). https://doi.org/10.1134/1.558985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558985

Keywords

Navigation