Skip to main content
Log in

Quasiclassical approximation with the centrifugal potential excluded

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We develop a modification of the WKB method (the modified quantization method, or MQM) for finding the radial wave functions. The method is based on excluding the centrifugal potential from the quasiclassical momentum and changing correspondingly the phase in the Bohr-Sommerfeld quantization condition. MQM is used to calculate the asymptotic coefficients at zero and at infinity. We use the examples of power-law and funnel potentials to show that MQM not only dramatically broadens the possibilities of studying the energy spectrum and the wave functions analytically but also ensures accuracy to within a few percent even when one calculates states with a radial quantum number n r ∼1, provided that the angular momentum l is not too large. We also briefly discuss the possibility of generalizing MQM to the relativistic case (the spinless Salpeter equation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, New York (1968).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3rd ed., Pergamon Press, Oxford (1977).

    Google Scholar 

  3. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions, and Decay in Non-relativistic Quantum Mechanics [in Russian], Nauka, Moscow (1975) [English translation of earlier Russian edition: NASA Techn. Transl. F-510 (1969)].

    Google Scholar 

  4. A. B. Migdal, Qualitative Methods in Quantum Theory, Addison-Wesley, Reading, Mass. (1977).

    Google Scholar 

  5. Functional Analysis [in Russian] (Mathematical Reference Library), Nauka, Moscow (1964), Chap. 7, $ 3.

  6. S. Flügge, Practical Quantum Mechanics, 2 vols., Springer-Verlag, Berlin (1971).

    Google Scholar 

  7. M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 (1972).

    Article  ADS  Google Scholar 

  8. V. M. Galitskii, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics [in Russian], Nauka, Moscow (1992) [English translation of earlier Russian edition: Prentice-Hall, Englewood Cliffs, NJ (1963)].

    Google Scholar 

  9. M. S. Marinov and V. S. Popov, Zh. Éksp. Teor. Fiz. 67, 1250 (1974) [Sov. Phys. JETP 40, 621 (1975)].

    Google Scholar 

  10. M. S. Marinov and V. S. Popov, J. Phys. A 8, 1575 (1975).

    Article  ADS  Google Scholar 

  11. E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D 17, 3090 (1978).

    Article  ADS  Google Scholar 

  12. A. M. Badalyan, D. I. Kitoroage, and D. S. Pariiskii, Yad. Fiz. 46, 226 (1987) [Sov. J. Nucl. Phys. 46, 139 (1987)].

    Google Scholar 

  13. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, Academic Press, New York (1980).

    Google Scholar 

  14. Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun (Eds.), National Bureau of Standards Applied Mathematics Series 55, Washington, D.C. (1964).

  15. B. M. Karnakov, V. D. Mur, and V. S. Popov, Yad. Fiz. 61, 481 (1998) [Phys. At. Nucl. 61, 420 (1998)].

    Google Scholar 

  16. J. Finger, D. Horn, and J. E. Mandula, Phys. Rev. D 20, 3253 (1979).

    Article  ADS  Google Scholar 

  17. A. Yu. Dubin, A. B. Kaidalov, and Yu. A. Simonov, Phys. Lett. B 323, 41 (1994); Yad. Fiz. 56(12), 213 (1993) [Phys. At. Nucl. 56, 1745 (1993)].

    ADS  Google Scholar 

  18. V. S. Popov, V. L. Eletsky, V. D. Mur, and D. V. Voskrersensky, Phys. Lett. B 80, 68 (1978); V. S. Popov, D. V. Voskresenskii, V. L. Eletskii, and V. D. Mur, Zh. Éksp. Teor. Fiz. 76, 431 (1979) [Sov. Phys. JETP 49, 216 (1979)].

    ADS  Google Scholar 

  19. V. D. Mur and V. S. Popov, Yad. Fiz. 28, 837 (1978) [Sov. J. Nucl. Phys. 28, 429 (1978)].

    MathSciNet  Google Scholar 

  20. P. Cea, P. Colangelo, G. Nardulli, G. Paiano, and G. Preparata, Phys. Rev. D 26, 1157 (1982); P. Cea, G. Nardulli, and G. Paiano, Phys. Rev. D 28, 2291 (1983).

    Article  ADS  Google Scholar 

  21. J. L. Basdevant and S. Boukraa, Z. Phys. C 28, 413 (1985).

    Article  Google Scholar 

  22. V. M. Vainberg, V. D. Mur, V. S. Popov, and A. V. Sergeev, Zh. Éksp. Teor. Fiz. 93, 450 (1987) [Sov. Phys. JETP 66, 258 (1987)].

    ADS  Google Scholar 

  23. V. S. Popov, V. D. Mur, A. V. Sergeev, and V. M. Vainberg, Phys. Lett. A 149, 418 (1990).

    ADS  Google Scholar 

  24. J. McEnnan, L. Kissel, and R. H. Pratt, Phys. Rev. A 13, 532 (1976).

    ADS  Google Scholar 

  25. M. Grant and C. S. Lai, Phys. Rev. A 20, 718 (1979).

    Article  ADS  Google Scholar 

  26. V. L. Eletsky, V. S. Popov, and V. M. Weinberg, Phys. Lett. A 84, 235 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 116, 511–525 (August 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnakov, B.M., Mur, V.D. & Popov, V.S. Quasiclassical approximation with the centrifugal potential excluded. J. Exp. Theor. Phys. 89, 271–278 (1999). https://doi.org/10.1134/1.558980

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558980

Keywords

Navigation