Skip to main content
Log in

Strong thermal self-action of a laser beam in gases and liquids

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Solutions which approximately describe the effect of strong thermal self-action of a laser beam in weakly absorbing media (gases and liquids) have been obtained. This paper considers the regimes of thermal conductivity, transverse flows of gases at subsonic and supersonic velocities, transonic nonlinear regime, and gravitational convection in a horizontal beam. Assuming that the shape of transverse intensity distribution is constant, and that the wave front can be approximated by a second-power polynomial, ordinary differential equations and their solutions for average transverse dimensions of beams have been obtained. These approximate solutions are in satisfactory agreement with exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Usp. Fiz. Nauk 93, 19 (1967) [Sov. Phys. Usp. 10, 609 (1967)].

    Google Scholar 

  2. V. N. Lugovoi and A. M. Prokhorov, Usp. Fiz. Nauk 111, 203 (1973) [Sov. Phys. Usp. 16, 658 (1973)].

    Google Scholar 

  3. F. G. Gebhardt and D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).

    Google Scholar 

  4. P. M. Livingston, Appl. Opt. 10, 426 (1971).

    ADS  Google Scholar 

  5. P. V. Avisonis, C. B. Hogge, R. R. Butts, and J. R. Kenemuth, Appl. Opt. 11, 554 (1972).

    ADS  Google Scholar 

  6. M. N. Kogan, and A. N. Kucherov, Dokl. Akad. Nauk SSSR 251, 575 (1980) [sic].

    ADS  Google Scholar 

  7. V. I. Talanov, JETP Lett. 11, 199 (1970).

    ADS  Google Scholar 

  8. A. N. Kucherov, M. N. Makashev, and E. V. Ustinov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 36, 135 (1993).

    Google Scholar 

  9. D. C. Smith and F. G. Gebhardt, Appl. Phys. Lett. 16, 275 (1970).

    Article  Google Scholar 

  10. R. A. Chodzko and S. C. Lin, AIAA J. 9, 1105 (1971).

    Google Scholar 

  11. V. A. Petrishchev, N. M. Sheronova, and V. E. Yashin, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 18, 963 (1975).

    ADS  Google Scholar 

  12. A. N. Kucherov, Dokl. Akad.Nauk SSSR 251, 309 (1980) [Sov. Phys. Dokl. 25, 135 (1980)].

    ADS  MATH  Google Scholar 

  13. A. N. Kucherov, Optika Atmosfery i Okeana 6, 1519 (1993).

    Google Scholar 

  14. A. N. Kucherov, Optika Atmosfery i Okeana 9, 1110 (1996).

    Google Scholar 

  15. A. N. Kucherov, Kvantovaya Élektronika 24, 181 (1997).

    Google Scholar 

  16. A. N. Kucherov, M. N. Makashev, and E. V. Ustinov, Optika Atmosfery i Okeana 6, 1536 (1993).

    Google Scholar 

  17. A. N. Kucherov, M. N. Makashev, and E. V. Ustinov, Kvantovaya Élektronika 22, 187 (1995).

    Google Scholar 

  18. E. Kamke, Handbook on Ordinary Differential Equations [Russian translation], Nauka, Moscow (1971).

    Google Scholar 

  19. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  20. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Elementary Functions [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  21. M. N. Kogan and A. N. Kucherov, Izv. Vyssh. Uchebn. Zaved. Fiz. No. 2, 104 (1983).

  22. M. N. Kogan, A. N. Kucherov, V. V. Mikhailov, and A. S. Fonarev, Izv. Akad. Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, 95 (1978).

  23. R. T. Brown and D. C. Smith, Appl. Phys. Lett. 25, 500 (1974).

    ADS  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Hydrodynamics, Pergamon Press, Oxford–New York (1980).

  25. D. C. Smith, IEEE J. Quantum Electron. QE-5, 600 (1969).

    Google Scholar 

  26. B. P. Gerasimov, V. M. Gordienko, and A. P. Sukhorukov, Zh. Tekh. Fiz. 45, 2485 (1975) [Sov. Phys. Tech. Phys. 20, 1551 (1975)].

    Google Scholar 

  27. M. Van Dyke, Perturbation Methods in Fluid Mechanics, New York (1964).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 116, 105–129 (July 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucherov, A.N. Strong thermal self-action of a laser beam in gases and liquids. J. Exp. Theor. Phys. 89, 56–69 (1999). https://doi.org/10.1134/1.558955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558955

Keywords

Navigation