Skip to main content
Log in

Effects related to spacetime foam in particle physics

  • Gravitation, Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is found that the existence of spacetime foam leads to a situation in which the number of fundamental quantum bosonic fields is a variable quantity. The general aspects of an exact theory that allows for a variable number of fields are discussed, and the simplest observable effects generated by the foam are estimated. It is shown that in the absence of processes related to variations in the topology of space, the concept of an effective field can be reintroduced and standard field theory can be restored. However, in the complete theory the ground state is characterized by a nonvanishing particle number density. From the effective-field standpoint, such particles are “dark.” It is assumed that they comprise dark matter of the universe. The properties of this dark matter are discussed, and so is the possibility of measuring the quantum fluctuation in the field potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Wheeler, in Relativity, Groups, and Topology, B. S. and C. M. DeWitt (eds.), Gordon & Breach, New York (1964); S. W. Hawking, Nuclear Phys. 114, 349 (1978).

    Google Scholar 

  2. A. A. Kirillov, Phys. Lett. B 399, 201 (1997); A. A. Kirillov and G. Montani, JETP Lett. 66, 475 (1997).

    ADS  MathSciNet  Google Scholar 

  3. S. W. Hawking, Phys. Rev. D 37, 904 (1988); Nucl. Phys. B 335, 155 (1990); S. Giddings and A. Strominger, Nucl. Phys. B 307, 854 (1988); G. V. Lavrelashvili, V. A. Rubakov, and P. G. Tinyakov, Nucl. Phys. B 299, 757 (1988); S. Coleman, Nucl. Phys. B 310, 643 (1988); T. Banks, Nucl. Phys. B 309, 493 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  4. L. J. Garay, Phys. Rev. Lett. 80, 2508 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. K. Wilson, Phys. Rev. B 10, 2445 (1974); V. Jones, Ann. Math. 126, 59 (1987); E. Witten, Commun. Math. Phys. 121, 351 (1980); C. Rovelli and L. Smolin, Nucl. Phys. B 331, 80 (1990).

    Article  ADS  Google Scholar 

  6. A. A. Kirillov, Gravit. Cosmol. 2(5), 123 (1996); Astron. Astrophys. Trans. 10, 95 (1996).

    MathSciNet  Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, 3rd ed., Pergamon Press, Oxford (1977).

    Google Scholar 

  8. H. B. G. Casimir, Proc. Kon. Nederl. Akad. Wet. 51, 793 (1948).

    MATH  Google Scholar 

  9. M. J. Sparnaay, Physica (Amsterdam) 24, 751 (1958).

    Article  Google Scholar 

  10. A. A. Starobinsky, Phys. Lett. B 91, 100 (1980); A. H. Guth, Phys. Rev. D 23, 347 (1981); A. D. Linde, Phys. Lett. B 108, 389 (1982).

    ADS  Google Scholar 

  11. A. D. Linde, Particle Physics and Inflationary Cosmology, Harwood Academic, New York (1990).

    Google Scholar 

  12. G. Borner, The Early Universe: Facts and Fiction, Springer-Verlag, New York (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1921–1934 (June 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirillov, A.A. Effects related to spacetime foam in particle physics. J. Exp. Theor. Phys. 88, 1051–1057 (1999). https://doi.org/10.1134/1.558891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558891

Keywords

Navigation