Skip to main content
Log in

Kinetics of indirect photoluminescence in GaAs/AlxGa1−x As double quantum wells in a random potential with a large amplitude

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The kinetics of indirect photoluminescence of GaAs/AlxGa1−x As double quantum wells, characterized by a random potential with a large amplitude (the linewidth of the indirect photoluminescence is comparable to the binding energy of an indirect exciton) in magnetic fields B≤12 T at low temperatures T≥1.3 K is investigated. It is found that the indirect-recombination time increases with the magnetic field and decreases with increasing temperature. It is shown that the kinetics of indirect photoluminescence corresponds to single-exciton recombination in the presence of a random potential in the plane of the double quantum wells. The variation of the nonradiative recombination time is discussed in terms of the variation of the transport of indirect excitons to nonradiative recombination centers, and the variation of the radiative recombination time is discussed in terms of the variation of the population of optically active excitonic states and the localization radius of indirect excitons. The photoluminescence kinetics of indirect excitons, which is observed in the studied GaAs/AlxGa1−x As double quantum wells for which the random potential has a large amplitude, is qualitatively different from the photoluminescence kinetics of indirect excitons in AlAs/GaAs wells and GaAs/AlxGa1−x As double quantum wells with a random potential having a small amplitude. The temporal evolution of the photoluminescence spectra in the direct and indirect regimes is studied. It is shown that the evolution of the photoluminescence spectra corresponds to excitonic recombination in a random potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. J. Chen, Emil. S. Koteles, B. S. Elman, and C. A. Armiento, Phys. Rev. B 36, 4562 (1987).

    ADS  Google Scholar 

  2. M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 50, 1098 (1987).

    Article  ADS  Google Scholar 

  3. S. R. Andrews, C. M. Murray, R. A. Davies, and T. M. Kerr, Phys. Rev. B 37, 8198 (1988).

    Article  ADS  Google Scholar 

  4. S. Charbonneau, M. L. W. Thewalt, E. S. Koteles, and B. Elman, Phys. Rev. B 38, 6287 (1988).

    ADS  Google Scholar 

  5. C. C. Phillips, R. Eccleston, and S. R. Andrews, Phys. Rev. B 40, 9760 (1989).

    ADS  Google Scholar 

  6. T. Kukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev. Lett. 64, 3066 (1990); A. Alexandrou, J. A. Kash, E. E. Mendez, M. Zachau, J. N. Hong, T. Kukuzawa, and Y. Hase, Phys. Rev. B 42, 9225 (1990); J. A. Kash, M. Zachau, E. E. Mendez, J. M. Hong, and T. Fukuzawa, Phys. Rev. Lett. 66, 2247 (1991).

    ADS  Google Scholar 

  7. M. M. Dignamn and J. E. Sipe, Phys. Rev. B 43, 4084 (1991).

    ADS  Google Scholar 

  8. L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 73, 304 (1994).

    Article  ADS  Google Scholar 

  9. L. V. Butov, A. Zrenner, G. Abstreiter, A. V. Petinova, and K. Eberl, Phys. Rev. 52, 12153 (1995); A. B. Dzyubenko and A. L. Yablocnskii, Phys. Rev. B 53, 16355 (1996).

    Google Scholar 

  10. J. E. Golub, S. D. Baranovskii, and P. Thomas, Phys. Rev. Lett. 78, 4261 (1997).

    Article  ADS  Google Scholar 

  11. V. B. Timofeev, A. I. Filin, A. V. Larionov, J. Zeman, G. Martinez, J. M. Hvam, D. Birkedal, and C. B. Sorensen, Europhys. Lett. 41, 535 (1998); V. B. Timofeev, A. V. Larionov, A. S. Iozelevich, J. Zeman, G. Martinex, J. Hvam, and K. Sorensen, JETP Lett. 67, 613 (1998).

    Article  ADS  Google Scholar 

  12. L. V. Butov and A. I. Filin, Phys. Rev. B 58, 1980 (1998).

    Article  ADS  Google Scholar 

  13. Yu. E. Lozovik and V. I. Yudson, Zh. Éksp. Teor. Fiz. 71, 738 (1976) [Sov. Phys. JETP 44, 389 (1976)].

    Google Scholar 

  14. S. I. Sevchenko, Fiz. Nizk. Temp. 2, 505 (1976) [Sov. J. Low Temp. Phys. 2, 251 (1976)].

    Google Scholar 

  15. I. V. Lerner and Yu. E. Lozovik, JETP Lett. 27, 467 (1978); I. V. Lerner and Yu. E. Lozovik, J. Low Temp. Phys. 38, 333 (1980); I. V. Lerner and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 80, 1488 (1981) [Sov. Phys. JETP 53, 763 (1981)].

    ADS  Google Scholar 

  16. Y. Kuramoto and C. Horie, Solid State Commun. 25, 713 (1978).

    Article  Google Scholar 

  17. T. Fukuzawa, S. S. Kano, T. K. Gustafson, and T. Ogawa, Surf. Sci. 228, 482 (1990).

    Article  Google Scholar 

  18. D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jpn. 59, 4211 (1990).

    Google Scholar 

  19. X. M. Chen and J. J. Quinn, Phys. Rev. Lett. 67, 8895 (1991).

    Google Scholar 

  20. X. Zhu, P. B. Littlewood, M. S. Hybersten, and T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995).

    Article  ADS  Google Scholar 

  21. L. V. Butov, A. Imamoglu, A. V. Minstev, K. L. Campman, and S. C. Gossard, Phys. Rev. B 59, 1625 (1999).

    Article  ADS  Google Scholar 

  22. J. Feldman, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliot, Phys. Rev. Lett. 59, 2337 (1987).

    Article  ADS  Google Scholar 

  23. E. Hanamura, Phys. Rev. B 38, 1228 (1988).

    Article  ADS  Google Scholar 

  24. L. C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. 77, 641 (1991).

    Google Scholar 

  25. B. Deveaud, F. Clerot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, Phys. Rev. Lett. 67, 2355 (1991).

    Article  ADS  Google Scholar 

  26. D. S. Citrin, Phys. Rev. B 47, 3832 (1993).

    ADS  Google Scholar 

  27. F. Minami, K. Hirata, K. Era, T. Yao, and Y. Matsumoto, Phys. Rev. B 36, 2875 (1987).

    Article  ADS  Google Scholar 

  28. M. Maaref, F. F. Charfi, D. Scalbert, C. Benoir a la Guillaume, and R. Planet, Phys. Status Solidi B 170, 637 (1992).

    Google Scholar 

  29. G. D. Gilliland, A. Antonelli, D. J. Wolford, K. K. Bajaj, J. Klem, and J. A. Bradley, Phys. Rev. Lett. 71, 3717 (1993).

    Article  ADS  Google Scholar 

  30. W. Zhao, P. Stenius, and A. Imamoglu, Phys. Rev. B 56, 5306 (1997).

    ADS  Google Scholar 

  31. I. V. Lerner and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 78, 1167 (1980) [Sov. Phys. JETP 51, 588 (1980)].

    Google Scholar 

  32. Yu. E. Lozovik and A. M. Ruvinskii, Zh. Éksp. Teor. Fiz. 112, 1791 (1997) [JETP 85, 979 (1997)].

    Google Scholar 

  33. A. V. Dzyubenko and G. E. W. Bauer, Phys. Rev. B 51, 14524 (1995).

    Google Scholar 

  34. M. Jiang, H. Wang, R. Merlin, D. G. Steel and M. Cardona, Phys. Rev. B 48, 15476 (1993).

    Google Scholar 

  35. T. Takagahara, Phys. Rev. B 31, 6552 (1985).

    ADS  Google Scholar 

  36. L. V. Butov and A. I. Filin, Zh. Éksp. Teor. Fiz. 114, 1115 (1998) [JETP 87, 608 (1998)].

    Google Scholar 

  37. Zh. S. Gevorkyan and Yu. E. Lozovik, Fiz. Tverd. Tela (Leningrad) 27, 1800 (1985) [Sov. Phys. Solid State 27, 1079 (1985)].

    Google Scholar 

  38. A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 72, 3382 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1890–1905 (May 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butov, L.V., Mintsev, A.V., Filin, A.I. et al. Kinetics of indirect photoluminescence in GaAs/AlxGa1−x As double quantum wells in a random potential with a large amplitude. J. Exp. Theor. Phys. 88, 1036–1044 (1999). https://doi.org/10.1134/1.558887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558887

Keywords

Navigation