Skip to main content
Log in

Supercritical convection associated with ultrafast MHD rotation

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Highly nonlinear buoyant convection is investigated analytically under conditions typically encountered in the liquid cores of planets in the solar system. As a result of the supercritical behavior (enormous Rayleigh number) and ultrafast rotation (small Ekman number) typical of such flows, diffusion and viscosity act only in layers that are asymptotically thin in comparison with the radius of the core. These boundary layers control the buoyancy, the large-scale velocity, and the magnetic field observed at the planetary surface. The interchange of the internal layers determines the small-scale (unobservable) fields and the prevailing symmetry of the large-scale magnetic fields. It is proved for the first time that axisymmetric azimuthal flows dominate at large scales, while convection cells elongated parallel to the axis of rotation dominate at small scales. A system of equations is derived which is optimum for describing magnetoconvection of planetary cores on both large and small scales. It yields estimates in superb agreement with expensive numerical and experimental models of supercritical convection associated with rapid rotation. Such models will be capable of solving the MHD dynamo problem only when their algorithms are made consistent with the asymptotic limits presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S._ I. Braginskii, Dokl. Akad. Nauk 149, 8 (1963).

    Google Scholar 

  2. F. H. Busse, Chaos 4(2), 123 (1994).

    Article  ADS  Google Scholar 

  3. J. E. Hart, G. A. Glatzmaier, and J. Toomre, J. Fluid Mech. 173, 519 (1986).

    ADS  Google Scholar 

  4. G. A. Glatzmaier and P. Olson, Geophys. Astrophys. Fluid Dyn. 70, 113 (1993).

    Google Scholar 

  5. G. A. Glatzmaier and P. H. Roberts, Phys. Earth Planet. Inter. 91, 63 (1995).

    Article  Google Scholar 

  6. G. A. Glatzmaier and P. H. Roberts, Contemp. Phys. 38, No. 4, 269 (1997).

    ADS  Google Scholar 

  7. A. Tilgner and F. H. Busse, J. Fluid Mech. 332, 359 (1997).

    ADS  Google Scholar 

  8. R. Hollerbach and C. A. Jones, Nature (London) 365, 541 (1993).

    Article  ADS  Google Scholar 

  9. S. V. Starchenko, Geophys. Astrophys. Fluid Dyn. 77, 55 (1994).

    Google Scholar 

  10. S. V. Starchenko and M. Kono, Geophys. Astrophys. Fluid Dyn. 82, 93 (1996).

    MathSciNet  Google Scholar 

  11. L. V. Ksanfomaliti, Astronom. Vestnik 32, 37 (1998).

    Google Scholar 

  12. X. Song and P. G. Richards, Nature (London) 382, 221 (1996).

    Article  ADS  Google Scholar 

  13. J. Bloxham and A. Jackson, J. Geophys. Res. 97, 19537 (1992).

    Google Scholar 

  14. S. V. Starchenko, Zh. Éksp. Teor. Fiz. 112, 2056 (1997) [JETP 85, 1125 (1997)].

    Google Scholar 

  15. A. A. Ruzmaikin and S. V. Starchenko, Icarus 93, 82 (1991).

    Article  ADS  Google Scholar 

  16. D. E. Loper, Geophys. J. R. Astron. Soc. 54, 389 (1978).

    Google Scholar 

  17. V. N. Zharkov and V. P. Trubitsyn, Physics of Planetary Interiors, Pachart Publ. House, Tucson (1978) [Russian original, Nauka, Moscow (1980)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1708–1720 (May 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starchenko, S.V. Supercritical convection associated with ultrafast MHD rotation. J. Exp. Theor. Phys. 88, 936–943 (1999). https://doi.org/10.1134/1.558874

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558874

Keywords

Navigation