Skip to main content
Log in

Ultrahigh-spatial-resolution photoelectron projection microscopy using femtosecond lasers

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Ultrahigh spatial resolution of two-photon photoelectron images (as high as 3 nm, which is the best value that has been achieved to date in photoelectron microscopy with spatial resolution) is obtained when silicon nanotips are irradiated by the second harmonic of a pulsed femtosecond Ti: sapphire laser. In addition, the absolute value of the two-photon external photoeffect coefficient is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Konopsky, S. K. Sekatskii, and V. S. Letokhov, Opt. Commun. 132, 251 (1996).

    Article  ADS  Google Scholar 

  2. S. K. Sekatskii and V. S. Letokhov, JETP Lett. 65, 491 (1997)].

    Google Scholar 

  3. V. S. Letokhov, in Laser Spectroscopy IX, M. S. Feld, J. E. Thomas, and A. Mooradian (Eds.), Academic Press, New York (1989), p. 494.

    Google Scholar 

  4. V. S. Letokhov and S. K. Sekatskii, Appl. Phys. B 55, 177 (1992).

    Article  Google Scholar 

  5. Model PEEM-350, Staib Instrumente GmbH, Langenbach, Germany.

  6. O. H. Griffith and G. F. Rempfer, Adv. Opt. Electron. Microsc. 10, 269 (1987).

    Google Scholar 

  7. R. Gomer, Field Emission Field Ionization, Harvard University Press, Cambridge, MA (1961).

    Google Scholar 

  8. T. T. Tsong, Atom-Probe Field Ion Microscopy, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  9. R. M. Broudy, Phys. Rev. B 1, 3430 (1970).

    Article  ADS  Google Scholar 

  10. E. I. Givargizov, J. Vac. Sci. Technol. B 11, 449 (1993).

    Article  Google Scholar 

  11. V. N. Konopsky, V. V. Zhirnov, N. S. Sokolov et al., J. Phys. IV 6, C5–129 (1996).

    Google Scholar 

  12. C. Sebenne, D. Bolmont, G. Guichar, and M. Balkanski, Phys. Rev. B 12, 3280 (1975).

    Article  ADS  Google Scholar 

  13. T. L. F. Leung and H. M. van Driel, Appl. Phys. Lett. 45, 683 (1984).

    ADS  Google Scholar 

  14. H. M. Liu and T. T. Tsong, J. Appl. Phys. 63, 1532 (1987).

    ADS  Google Scholar 

  15. J. W. Gadzuk, Phys. Rev. B 47, 12 832 (1993).

    Google Scholar 

  16. V. N. Konopsky, S. K. Sekatskii, and V. S. Letokhov, J. Phys. IV 6, C5–125 (1996).

    Google Scholar 

  17. Deep Centers in Semiconductors, S. T. Pantelides (Ed.), Gordon and Breach, New York (1986).

    Google Scholar 

  18. J. Bourgoin and M. Lannoo, Point Defects in Semiconductors, Springer, Berlin (1983).

    Google Scholar 

  19. E. F. Lazneva, Laser Desorption [in Russian], Izd. Leningrad. Univ., Leningrad (1990).

    Google Scholar 

  20. E. M. Logothetis and P. L. Hartman, Phys. Rev. 187, 460 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1680–1688 (May 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekatskii, S.K., Chekalin, S.V., Ivanov, A.L. et al. Ultrahigh-spatial-resolution photoelectron projection microscopy using femtosecond lasers. J. Exp. Theor. Phys. 88, 921–925 (1999). https://doi.org/10.1134/1.558872

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558872

Keywords

Navigation