Skip to main content
Log in

Anomalous light-induced drift of linear molecules

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The sudden approximation in energy is used to derive analytic formulas that describe the anomalous light-induced drift (LID) of linear molecules absorbing radiation in the rovibrational transition nJ i mJ f (n and m are the ground and excited vibrational states, and J α is the rotational quantum number in the vibrational state α=m, n). It is shown that for all linear molecules with moderate values B≲1 cm−1 of the rotational constant, anomalous LID can always by observed under the proper experimental conditions; temperature T, rotational quantum number J i , and type of transition (P or R). The parameter γ=B[J i (J i +1)−J f (J f +1)] ν n /2k BT (ν m ν n ) is used to derive a condition for observing anomalous LID: γ∼1 (k B is the Boltzmann constant and ν α is the transport rate of collisions of molecules in the vibrational state α and buffer particles at moderate molecular velocities

, where \(\bar \upsilon _b\) is the most probable velocity of the buffer particles). For ν m >ν n anomalous LID can be observed only in P-transitions, while for ν m <ν n it can be observed only in R-transitions. It is shown that anomalous LID is possible for all ratios β=M b /M of the masses of the buffer particles (M b ) and of the resonant particles (M) and any absorption-line broadening (Doppler or homogeneous). The optimum conditions for observing anomalous LID are realized when the absorption line is Doppler-broadened in an atmosphere of medium-weight (β∼1) and heavy (β≫1) buffer particles. In this case, anomalous LID can be observed in the same transition within a broad temperature interval ΔTT. If the buffer particles are light (β≪1) or if the broadening of the absorption line is homogeneous, anomalous LID in the same transition can be observed only within a narrow temperature range ΔTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kh. Gel’mukhanov and A. M. Shalagin, JETP Lett. 29, 711 (1979).

    ADS  Google Scholar 

  2. V. D. Antsygin, S. N. Atutov, F. Kh. Gel’mukhanov, G. G. Telegin, and A. M. Shalagin, JETP Lett. 30, 261 (1979).

    ADS  Google Scholar 

  3. A. M. Shalagin, “Light-induced drift,” in Physics Encyclopedia [in Russian], Vol. 4, A. M. Prokhorov (Ed.), Bol’shaya Rosiiskaya Éntsiklopediya, Moscow (1994), p. 468.

    Google Scholar 

  4. S. G. Rautian and A. M. Shalagin, Kinetic Problems of Non-linear Spectroscopy, North-Holland, Amsterdam (1991).

    Google Scholar 

  5. G. Nienhuis, Phys. Rep. 138, 151 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  6. H. G. C. Werij and J. P. Woerdman, Phys. Rep. 169, 145 (1988).

    Article  ADS  Google Scholar 

  7. E. R. Eliel, Adv. At., Mol., Opt. Phys. 30, 199 (1992).

    Google Scholar 

  8. L. J. F. Hermans, Int. Rev. Phys. Chem. 11, 289 (1992).

    Google Scholar 

  9. V. P. Mironenko and A. M. Shalagin, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 995 (1981).

    Google Scholar 

  10. P. L. Chapovskii, Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 1069 (1989).

    Google Scholar 

  11. G. J. van der Meer, J. Smeets, S. P. Pod’yachev, and L. J. F. Hermans, Phys. Rev. A 45, R1303 (1992).

  12. F. Kh. Gel’mukhanov and A. I. Parkhomenko, Phys. Lett. A 162, 45 (1992).

    ADS  Google Scholar 

  13. P. L. Chapovsky, G. J. van der Meer, J. Smeets, and L. J. F. Hermans, Phys. Rev. A 45, 8011 (1992).

    Article  ADS  Google Scholar 

  14. G. J. van der Meer, J. Smeets, E. R. Eliel, P. L. Chapovsky, and L. J. F. Hermans, Phys. Rev. A 47, 529 (1992).

    Google Scholar 

  15. E. J. van Duijn, H. I. Bloemink, E. R. Eliel, and L. J. F. Hermans, Phys. Lett. A 184, 93 (1993).

    ADS  Google Scholar 

  16. E. J. van Duijn, R. Nokhai, and L. J. F. Hermans, J. Chem. Phys. 105, 6375 (1996).

    ADS  Google Scholar 

  17. F. Yahyaei-Moayyed and A. D. Streater, Phys. Rev. A 53, 4331 (1996).

    Article  ADS  Google Scholar 

  18. B. Nagels, P. L. Chapovsky, L. J. F. Hermans, G. J. van der Meer, and A. M. Shalagin, Phys. Rev. A 53, 4305 (1996).

    Article  ADS  Google Scholar 

  19. F. Kh. Gel’mukhanov and A. I. Parkhomenko, Zh. Éksp. Teor. Fiz. 102, 424 (1992) [Sov. Phys. JETP 75, 225 (1992)].

    Google Scholar 

  20. F. Kh. Gel’mukhanov, G. V. Kharlamov, and S. G. Rautian, Opt. Commun. 94, 521 (1992).

    ADS  Google Scholar 

  21. I. Kuščer, L. J. F. Hermans, P. L. Chapovsky, J. J. M. Beenakker, and G. J. van der Meer, J. Phys. B 26, 2837 (1993).

    ADS  Google Scholar 

  22. F. Kh. Gel’mukhanov and A. I. Parkhomenko, J. Phys. B 28, 33 (1995).

    ADS  Google Scholar 

  23. A. I. Parkhomenko, Opt. Spektrosk. 80, 604 (1996) [Opt. Spectrosc. 80, 541 (1996)].

    Google Scholar 

  24. F. Kh. Gel’mukhanov, A. I. Parkhomenko, T. I. Privalov, and A. M. Shalagin, J. Phys. B 30, 1819 (1997).

    ADS  Google Scholar 

  25. A. I. Parkhomenko and A. M. Shalagin, Zh. Éksp. Teor. Fiz. 113, 1649 (1998) [JETP 86, 897 (1998)].

    Google Scholar 

  26. R. Goldflam, D. J. Kouri, and S. Green, J. Chem. Phys. 67, 5661 (1977).

    ADS  Google Scholar 

  27. G. A. Parker and R. T. Pack, J. Chem. Phys. 67, 1585 (1977).

    Google Scholar 

  28. V. Khare, J. Chem. Phys. 68, 4631 (1978).

    Article  ADS  Google Scholar 

  29. M. Faubel, Adv. At. Mol. Phys. 30, 199 (1992).

    Google Scholar 

  30. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore (1987).

    Google Scholar 

  31. A. S. Dickinson, Comput. Phys. Commun. 17, 51 (1979).

    ADS  Google Scholar 

  32. Z. H. Top and D. J. Kouri, Chem. Phys. 37, 265 (1979).

    Article  Google Scholar 

  33. A. V. Bogdanov, G. V. Dubrovskii, and A. I. Osipov, Khim. Fiz. 4, 1155 (1985).

    Google Scholar 

  34. M. L. Strekalov, Khim. Fiz. 7, 1182 (1988).

    Google Scholar 

  35. A. V. Storozhev and M. L. Strekalov, Khim. Fiz. 16(2), 17 (1997).

    Google Scholar 

  36. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Springer, Berlin (1985).

    Google Scholar 

  37. H. I. Bloemink, J. M. Boon-Engering, P. L. Chapovsky, L. J. F. Hermans, and E. R. Eliel, J. Phys. B 27, 4559 (1994).

    Article  ADS  Google Scholar 

  38. L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed., Butterworth-Heinemann, Boston (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1664–1679 (May 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhomenko, A.I. Anomalous light-induced drift of linear molecules. J. Exp. Theor. Phys. 88, 913–920 (1999). https://doi.org/10.1134/1.558871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558871

Keywords

Navigation