Skip to main content
Log in

Thermally activated conductivity and current-voltage characteristic of dielectric phase in granular metals

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Models of thermally activated linear and high-field nonlinear conductivity of a dielectric phase in granular metals (nanocomposites), i.e., aggregates of small metallic grains in a dielectric matrix, have been suggested. Given a sufficiently large spread of grain sizes, the temperature dependence of the nanocomposite conductivity should be described by a universal “power-1/2” law: G∝exp[−(T 0/T)1/2]. An analytical expression for T 0 has been obtained. It is found that there are two regimes of nonlinear conductivity in a high electric field, namely, a low-field regime, when both the number and mobility of carriers change with the field strength, and a high-field regime, when only the mobility of carriers is variable. Analytical expressions for the nonlinear conductance in both regimes have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, e.g., the special issue of Phil. Mag. B 65 (1992).

  2. C. J. Adkins, in Metal-Insulator Transitions Revisited, ed. by P. P. Edwards and C. N. R. Rao, Taylor & Francis (1995); J. Phys.: Condens. Matter 1, 1253 (1989).

  3. P. Sheng, Philos. Mag. B 65, 357 (1992).

    Google Scholar 

  4. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, Springer, New York (1984).

    Google Scholar 

  5. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  ADS  Google Scholar 

  6. S. T. Chui, Phys. Rev. B 43, 14274 (1991); E. Cuevas, M. Ortuño, and J. Ruiz, Phys. Rev. Lett. 71, 1871 (1993).

  7. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Oxford (1980).

    Google Scholar 

  8. B. A. Aronzon, A. E. Varfolomeev, D. Yu. Kovalev et al., Fiz. Tverd. Tela 40, No. 6 (1999) (in press); A. A. Likal’ter, private communication.

  9. A. B. Pakhomov, X. Yan, N. Wang et al., Physica A 241, 344 (1997).

    Article  ADS  Google Scholar 

  10. G. Eytan, R. Rosenbaum, D. S. McLachlan, and A. Albers, Phys. Rev. B 48, 6342 (1993).

    Article  ADS  Google Scholar 

  11. B. Zhao and X. Yan, Physica A 241, 367 (1997).

    Article  ADS  Google Scholar 

  12. J. I. Gittleman, Y. Goldstein, and S. Bozowski, Phys. Rev. B 5, 3609 (1972).

    Article  ADS  Google Scholar 

  13. S. A. Gurevich, V. V. Khorenko, L. Yu. Kupriyanov et al., JETP Lett. 64, 736 (1996).

    Article  ADS  Google Scholar 

  14. V. V. Ryl’kov, private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1484–1496 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meilikhov, E.Z. Thermally activated conductivity and current-voltage characteristic of dielectric phase in granular metals. J. Exp. Theor. Phys. 88, 819–825 (1999). https://doi.org/10.1134/1.558861

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558861

Keywords

Navigation