Skip to main content
Log in

Statistical theory of a solvated electron in an electrolyte

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The behavior of a solvated electron in an electrolyte is investigated. The formalism of the theory is based on variational estimation of path integrals. It reduces the problem to the investigation of the self-consistent mean field produced by the ions and the electron. Mayer cluster expansions make it possible to take account of the short-range interactions and to find expressions for the effective potential of the electron and the electron-ion and electron-neutral atom correlation functions as a function of the macro-and microscopic parameters of electrolytes. In the limit of high ion densities the behavior of the electron is determined solely by the Coulomb interaction, which results in the formation of a polaron state. This state of the electron is virtually independent of the thermodynamic parameters of the electrolyte. In the opposite limit of low ion densities the electron forms a cavity state. The presence of ions results in additional localization of the electron and is manifested experimentally as a shift of the absorption band in the direction of high energies. The estimated shift for a hydrated electron agrees with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jortner and N. R. Kestner, Electrons in Fluids (Springer, Berlin, 1973).

    Google Scholar 

  2. L. Kevan and B. Webster, Electron-Solvent and Anion-Solvent Interactions (Elsevier, Amsterdam, 1976).

    Google Scholar 

  3. L. Kevan and D. F. Feng, Chem. Rev. 80, 1 (1980).

    Google Scholar 

  4. E. M. Itskovich, A. M. Kuznetsov, and J. Ulstrup, in The Chemical Physics of Solvation, edited by R. R. Dogonadze, E. M. Itskovich, E. Kalman, A. A. Kornyshev, and J. Ulstrup (Elsevier, Amsterdam, 1988).

    Google Scholar 

  5. C. Ferradini and J. P. Jay-Gerin, Excess Electrons in Dielectric Media (CRC Press, Boca Raton, 1991).

    Google Scholar 

  6. D. Chandler, Y. Singh, and D. M. Richardson, J. Chem. Phys. 81, 1975 (1984).

    ADS  Google Scholar 

  7. G. Malescio and M. Parrinello, Phys. Rev. A 35, 897 (1987).

    Article  ADS  Google Scholar 

  8. M. R. Shaw and D. Thirumalai, J. Chem. Phys. 93, 3450 (1990).

    Article  ADS  Google Scholar 

  9. J. Zhu and R. Cukier, J. Chem. Phys. 99, 5384 (1993).

    ADS  Google Scholar 

  10. S. Miura and F. Hirata, J. Chem. Phys. 98, 9649 (1994).

    Google Scholar 

  11. G. N. Chuev, Zh. Éksp. Teor. Fiz. 105, 626 (1994) [JETP 78, 334 (1994)].

    Google Scholar 

  12. G. N. Chuev, Physica D 83, 68 (1995).

    Article  ADS  Google Scholar 

  13. G. N. Chuev, Izv. Akad. Nauk, Ser. Fiz. 61(9), 1770 (1997).

    Google Scholar 

  14. D. Chandler and K. Leung, Annu. Rev. Phys. Chem. 45, 1500 (1994).

    Article  Google Scholar 

  15. G. N. Chuev, Usp. Fiz. Nauk 169(1) (1999).

  16. E. J. Hart and M. Anbar, The Hydrated Electron (Wiley-Interscience, New York, 1970; Russian translation, Atomizdat, Moscow, 1973).

    Google Scholar 

  17. J. Thompson, Electrons in Liquid Ammonia (Clarendon Press, Oxford, 1976; Russian translation, Mir, Moscow, 1979).

    Google Scholar 

  18. A. K. Pikaev, Modern Radiation Chemisty. Radiolysis of Gases and Liquids (Nauka, Moscow, 1986).

    Google Scholar 

  19. A. G. Khrapak and I. T. Yakubov, Electrons in Dense Gases and Plasma (Nauka, Moscow, 1981).

    Google Scholar 

  20. J. H. Baxendale and F. Busi, The Study of Fast and Transient Species by Electron Pulse Radiolysis (Reidel, Dordrecht, 1982).

    Google Scholar 

  21. R. M. A. Farhataziz, Radiation Chemistry: Principles and Applications (VCH, New York, 1987).

    Google Scholar 

  22. N. K. Balabaev and V. D. Lakhno, Preprint, Scientific and Technial Information Branch of the Science Center for Biological Studies (Pushchino, 1979).

  23. M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).

    Article  ADS  Google Scholar 

  24. G. Malescio, Phys. Rev. A 36, 5847 (1987).

    Article  ADS  Google Scholar 

  25. A. Selloni, R. Carnevali, R. Car, and M. Darrinello, Phys. Rev. Lett. 59, 833 (1987).

    Article  ADS  Google Scholar 

  26. J. F. Rounsaville and J. J. Lagowski, J. Phys. Chem. 72, 1111 (1968).

    Article  Google Scholar 

  27. V. D. Lakhno and G. N. Chuev, Usp. Fiz. Nauk 165, 285 (1995).

    Google Scholar 

  28. P. J. Rossky and J. Schnitker, J. Phys. Chem. 92, 4277 (1988).

    Article  Google Scholar 

  29. I. V. Kreitus and D. A. Strode, Khim. Vys. Énerg. 23, 218 (1989).

    Google Scholar 

  30. I. M. Lifshitz, Usp. Fiz. Nauk 83, 617 (1964) [Sov. Phys. Usp. 7(4), 549 (1965)].

    Google Scholar 

  31. V. D. Lakhno and O. V. Vasil’ev, Chem. Phys. Lett. 177, 147 (1991).

    Article  Google Scholar 

  32. V. D. Lakhno and O. V. Vasil’ev, Phys. Lett. A 152, 300 (1991).

    Article  ADS  Google Scholar 

  33. I. V. Kreitus, J. Phys. Chem. 89, 1987 (1985).

    Article  Google Scholar 

  34. D. N. Zubarev, Dokl. Akad. Nauk SSSR 95(4), 757 (1954).

    MATH  MathSciNet  Google Scholar 

  35. A. L. Kholodenko, J. Chem. Phys. 91, 4849 (1989).

    ADS  MathSciNet  Google Scholar 

  36. I. R. Yukhnovskii and M. F. Golovko, The Statistical Theory of Classical Equilibrium Systems (Naukova dumka, Kiev, 1980).

    Google Scholar 

  37. M. V. Fedoryuk, The Method of Steepest Descent (Nauka, Moscow, 1977).

    Google Scholar 

  38. T. Hill, Statisical Mechanics: Principles and Selected Applications (McGraw-Hill, New York, 1956; Russian translation, Izd. Inostr. Lit., Moscow, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1463–1477 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuev, G.N. Statistical theory of a solvated electron in an electrolyte. J. Exp. Theor. Phys. 88, 807–814 (1999). https://doi.org/10.1134/1.558859

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558859

Keywords

Navigation