Skip to main content
Log in

Donor states in tunnel-coupled quantum wells

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the energy spectrum of the impurity states in tunnel-coupled double quantum wells for Coulomb and short-range donor potentials. We calculate the impurity contribution and the density of states and detect the transformation of a localized donor state into a resonant state when the binding energy of the donor in an isolated quantum well is less than the separation of the energy levels of the double quantum wells. In the opposite case, where the binding energy is greater than the level separation, there is tunneling repulsion between adjacent impurity levels, with the degree of degeneracy of the levels changing when there is tunneling mixing of the ground and excited impurity states from different wells. Resonant states emerge in an asymmetric double quantum well, while in a symmetric double quantum well the impurity level at the barrier’s center proves to be localized even against the background of the continuum. The calculations are based on a general expression for the impurity contribution to the density of states in terms of a 2-by-2 matrix Green’s function, i.e., only a pair of tunnel-coupled levels of the double quantum wells is taken into account. For an impurity with a short-range potential, we derive a matrix generalization of the Koster-Slater solution, while the impurity with a Coulomb potential is analyzed by using the approximation of a narrow resonance and close arrangement of the repulsive levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Eisenstein, Superlattices Microstruct. 12, 107 (1992).

    ADS  Google Scholar 

  2. T. Ohno, H. Sakaki, and M. Tsuchiya, Phys. Rev. B 49, 11492 (1994).

  3. Y. Berk, A. Kamenev, A. Palevski, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 51, 2604 (1995).

    ADS  Google Scholar 

  4. I. V. Butov, A. Zrenner, G. Abstreiter, A. V. Petinova, and K. Ebert, Phys. Rev. B 52, 12153 (1995).

    Google Scholar 

  5. Y. Huang and C. Lien, Phys. Low-Dim. Struct. 4/5, 1 (1995).

    Google Scholar 

  6. M. F. Krol, R. P. Leavitt, J. T. Pham, B. P. McGinnis, and N. Peyghambarian, Appl. Phys. Lett. 66, 3045 (1995).

    Article  ADS  Google Scholar 

  7. V. B. Timofeev, A. V. Larionov, P. S. Dorozhkin, M. Bayer, A. Forchel, and J. Straka, JETP Lett. 65, 877 (1997).

    Article  ADS  Google Scholar 

  8. A. M. Stoneham, Theory of Defects in Solids: Electronic Structure and Defects in Insulators and Semiconductors, Clarendon Press, Oxford (1975); J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II. Experimental Aspects, Springer-Verlag, Berlin (1983).

    Google Scholar 

  9. R. L. Greene and K. K. Bajaj, J. Vac. Sci. Technol. B 1, 391 (1983).

    Google Scholar 

  10. R. Ranganathan, B. D. McCombe, N. Nguyen, Y. Zhang, M. L. Rustgi, and W. J. Schaff, Phys. Rev. B 44, 1423 (1991).

    Article  ADS  Google Scholar 

  11. A. B. Dzyubenko, Zh. Éksp. Teor. Fiz. 113, 1446 (1998) [JETP 86, 790 (1998)]; A. B. Dzyubenko and A. L. Yablonskii, JETP Lett. 64, 213 (1996).

    Google Scholar 

  12. G. W. Bryant, Phys. Rev. B 47, 1683 (1993).

    ADS  Google Scholar 

  13. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, Phys. Rev. B 44, 6231 (1991).

    Article  ADS  Google Scholar 

  14. D. Y. Oberli, G. Bohm, G. Weinmann, and J. A. Brum, Phys. Rev. B 49, 5757 (1994).

    Article  ADS  Google Scholar 

  15. S. Glutsch, F. Bechstedt, and D. S. Chemla, in Proc. 23rd Int. Conf. on Phys. Semicond., M. Scheffler and R. Zimmermann (eds.), World Scientific, Singapore (1996).

    Google Scholar 

  16. D. Birkedal, K. El. Sayed, G. Sanders, C. Spiegelberg, V. G. Lyssenko, C. Stanton, J. M. Hvam, V. B. Timofeev, and M. Bayer, Phys. Rev. B 54, 10 316 (1996); G. Kh. Tartakovskii, V. B. Timofeev, V. G. Lysenko, D. Birkedal, and J. Hvam, Zh. Éksp. Teor. Fiz. 112, 1106 (1997) [JETP 85, 601 (1997)].

    Google Scholar 

  17. E. N. Economou, Green’s Functions in Quantum Physics, Springer-Verlag, Berlin (1983).

    Google Scholar 

  18. A. Yariv, C. Lindsey, and U. Sivan, J. Appl. Phys. 58, 3669 (1985); F. T. Vas’ko and O. É. Raichev, Zh. Éksp. Teor. Fiz. 107, 951 (1995) [JETP 80, 539 (1995)].

    Article  ADS  Google Scholar 

  19. F. T. Vasko and O. E. Raichev, Phys. Rev. B 50, 12 159 (1994); 51, 7116 (1995).

    Google Scholar 

  20. J. Galbraith and G. Duggan, Phys. Rev. B 40, 5515 (1989).

    Article  ADS  Google Scholar 

  21. M. Bayer and V. B. Timofeev, Phys. Rev. B 54, 8799 (1996).

    Article  ADS  Google Scholar 

  22. L. Shazhong and J. B. Khurgin, Phys. Rev. B 46, 12 535 (1992).

    Google Scholar 

  23. V. Takahashi, Y. Kato, S. Fukatsu, Y. Shivaki, and R. Ito, J. Appl. Phys. 76, 2299 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1337–1352 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vas’ko, F.T., Pipa, V.I. Donor states in tunnel-coupled quantum wells. J. Exp. Theor. Phys. 88, 738–746 (1999). https://doi.org/10.1134/1.558851

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558851

Keywords

Navigation