Skip to main content
Log in

Influence of quantum transitions in the continuum on ionization of atoms in strong fields

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The tight-binding method is used to analyze the ionization of a hydrogenlike atom by an intense monochromatic laser field. The orthogonal and normalized basis in which the solution of the time-dependent Schrödinger equation is expanded contains unperturbed wave functions of the discrete spectrum and generalized Coulomb wave functions of the continuum. In the solution of the coupled equations we make use of the fact that the bound-free and free-free transitions are efficient in different regions of complex time. Simplified equations are constructed and investigated. Results of calculations for ionization of a hydrogen atom from its ground state and of the energy distribution of the electrons in strong and superstrong linearly polarized fields are presented. It is shown that in this case the ground state decays completely, and free-free transitions play a defining role in the dynamics of the process. It is established that the total probability of population of the upper Rydberg states abutting the continuum does not exceed 0.05. The range of applicability of the approach is discussed. A comparison with numerical results obtained by other authors is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].

    Google Scholar 

  2. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Éksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)].

    Google Scholar 

  3. F. H. M. Faisal, J. Phys. B 6, L89 (1973).

    ADS  Google Scholar 

  4. H. R. Reiss, Phys. Rev. A 22, 1786 (1980); 42, 1476 (1990).

    ADS  Google Scholar 

  5. Yu. A. Bychkov and A. M. Dykhne, Zh. Éksp. Teor. Fiz. 58, 1734 (1970) [Sov. Phys. JETP 31, 928 (1970)].

    Google Scholar 

  6. D. F. Zaretskii and V. P. Krainov, Zh. Éksp. Teor. Fiz. 66, 537 (1974) [Sov. Phys. JETP 39, 257 (1974)]; ibid. 67, 1301 (1975) [Sov. Phys. JETP 40, 647 (1975)].

    Google Scholar 

  7. N. B. Delone and V. P. Krainov, Atoms in Strong Light Fields [in Russian], Atomizdat, Moscow (1978) [Springer Series in Chemical Physics, Vol. 28, Springer-Verlag, Berlin (1985)].

    Google Scholar 

  8. N. B. Delone and V. P. Krainov, Usp. Fiz. Nauk 168, 531 (1998).

    Google Scholar 

  9. V. P. Krainov, J. Opt. Soc. Am. B 14, 425 (1997).

    ADS  Google Scholar 

  10. L. P. Presnyakov and D. B. Uskov, Zh. Éksp. Teor. Fiz. 86, 882 (1984) [Sov. Phys. JETP 59, 515 (1984)].

    Google Scholar 

  11. F. Melchert, M. Brenner, S. Krüdener, R. Schulze, S. Meuser, K. Huber, E. Salzborn, D. B. Uskov, and L. P. Presnyakov, Phys. Rev. Lett. 74, 888 (1995).

    Article  ADS  Google Scholar 

  12. J. Z. Kamin’ski, Physica Scripta A 42, 417 (1990).

    ADS  Google Scholar 

  13. M. H. Mittleman, Phys. Rev. A 50, 3249 (1994).

    Article  ADS  Google Scholar 

  14. L. P. Presnyakov, H. Tawara, I. Yu. Tolstikhina, and D. B. Ustov, J. Phys. B 28, 785 (1995).

    Article  ADS  Google Scholar 

  15. L. P. Presnyakov and D. B. Uskov, JETP Lett. 66, 22 (1997).

    Article  ADS  Google Scholar 

  16. B. A. Zon, Zh. Éksp. Teor. Fiz. 73, 128 (1977) [Sov. Phys. JETP 46, 65 (1977)].

    Google Scholar 

  17. M. H. Mittleman, Phys. Rev. A 14, 1338 (1976); 16, 1549 (1977); 21, 79 (1980).

    ADS  Google Scholar 

  18. F. W. Byron, Jr., P. Francken, and C. J. Joachain, J. Phys. B 20, 5487 (1987).

    ADS  Google Scholar 

  19. L. A. Collins and A. L. Merts, Phys. Rev. A 45, 6615 (1992).

    ADS  Google Scholar 

  20. J. Zhang and P. Lambropoulos, J. Nonlinear Opt. Phys. Mater. 4, 633 (1995).

    Article  ADS  Google Scholar 

  21. E. Cormier and P. Lambropoulos, J. Phys. B 30, 77 (1997).

    ADS  Google Scholar 

  22. C. J. Joachain, M. Dorr, and N. J. Kylstra, Comments At. Mol. Phys. 33, No. 5, 247 (1997).

    Google Scholar 

  23. F. Ehlotsky, A. Jaroń, and J. Z. Kamin’ski, Phys. Rep. 297, 63 (1998).

    ADS  Google Scholar 

  24. M. V. Federov and A. M. Movsesian, J. Opt. Soc. Am. B 6, 928 (1989).

    ADS  Google Scholar 

  25. A. M. Movsesyan and M. V. Federov, Zh. Éksp. Teor. Fiz. 95, 42 (1989) [Sov. Phys. JETP 68, 27 (1989)].

    Google Scholar 

  26. V. B. Berestetskii, E. M. Lifshitz, and L. P, Pitaevskii, Quantum Electrodynamics, 2nd ed. Pergamon Press, Oxford (1982).

    Google Scholar 

  27. E. E. Nikitin and S. Ya. Umanskii, Non-Adiabatic Transitions During Slow Atomic Collisions [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  28. R. K. Janev and L. P. Presnyakov, J. Phys. B 13, 4233 (1980).

    ADS  Google Scholar 

  29. A. Sommerfeld, Atomic Structure of Spectral Lines, 3rd ed., transl. from the 5th German ed., Methuen, London (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1196–1209 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondorskii, A.D., Presnyakov, L.P. Influence of quantum transitions in the continuum on ionization of atoms in strong fields. J. Exp. Theor. Phys. 88, 658–665 (1999). https://doi.org/10.1134/1.558841

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558841

Keywords

Navigation