Skip to main content
Log in

Parametric instability and Hamiltonian chaos in cavity semiclassical electrodynamics

  • Nonlinear Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the nonlinear dynamics of the interaction of two-level atoms and a selected mode of a high-Q cavity with frequency modulation analytically and numerically. In the absence of modulation, the corresponding semiclassical Heisenberg equations for the expectation values of the collective atomic observables and the field-mode amplitudes allow, in the rotating wave approximation and in the strong-coupling limit, an exact solution with arbitrary detuning. Using this solution, we detect the coherent effect of trapping of the population of atomic levels and of trapping of the number of photons in the cavity. The explanation for this effect lies in the destructive interference of the atomic dipoles and the field mode. The integrable version of the system of equations exhibits a separatrix near which a stochastic layer is formed when modulation is introduced. The width of the layer is found to gradually increase with degree of modulation, and finally it fills the entire energy-permissible volume of the phase space. We show that the rotating wave approximation does not hinder the formation of Hamiltonian chaos in cavity semiclassical electrodynamics. The calculation of the maximum Lyapunov indices of nonlinear (in this approximation) equations of motion as functions of the modulation frequency δ and the frequency of natural Rabi oscillations of the atom-field system, Ω, suggests that Hamiltonian chaos appears first in the area of the fundamental parametric resonance, δ/2Ω≃1. Parametric instability increases with increasing modulation and decreasing detuning from the atom-field resonance, generating at exact resonance new areas of chaos corresponding to multiple parametric resonances. The results of numerical experiments and estimates of the characteristic parameters show that Rydberg atoms placed in a high-Q microwave cavity are possible objects for observing parametric instability and dynamical chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Raimonds and S. Haroche, in Confined Electrons and Photons, E. Burstein and C. Weisbuch (Eds.), Plenum Press, New York (1995), p. 383.

    Google Scholar 

  2. Y. Kaluzny, P. Goy, M. Gross, J. M. Raimonds, and S. Haroche, Phys. Rev. Lett. 51, 1175 (1983); G. Rempe, H. Walter, and N. Klein, Phys. Rev. Lett. 58, 3523 (1987).

    Article  ADS  Google Scholar 

  3. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Google Scholar 

  4. P. I. Belobrov, G. M. Zaslavskii, and G. Kh. Tartakovskii, Zh. Éksp. Teor. Fiz. 71, 1799 (1976) [Sov. Phys. JETP 44, 945 (1976)].

    Google Scholar 

  5. R. F. Fox and J. C. Eidson, Phys. Rev. A 34, 482 (1986).

    ADS  MathSciNet  Google Scholar 

  6. L. E. Kon’kov and S. V. Prants, J. Math. Phys. 37, 1204 (1986).

    MathSciNet  Google Scholar 

  7. S. V. Prants and L. E. Kon’kov, Phys. Lett. A 225, 33 (1997).

    Article  ADS  Google Scholar 

  8. L. E. Kon’kov and S. V. Prants, JETP Lett. 65, 833 (1997).

    ADS  Google Scholar 

  9. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Phenomena in Optics: Superradiation, Bistability, and Phase Transitions [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  10. I. L. Kirilyuk, L. E. Kon’kov, and S. V. Prants, submitted to Rep. Math. Phys.

  11. G. T. Moore, J. Math. Phys. 11, 2679 (1970).

    Article  Google Scholar 

  12. V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, P. N. Lebedev Physics Institute Preprint No. 41, Moscow (1991).

  13. B. S. Dewitt, Phys. Rep. 19, 295 (1975); V. V. Hizhnyakov, Quantum Opt. 4, 277 (1992).

    Article  ADS  Google Scholar 

  14. K. Zaheer and M. S. Zubairy, Phys. Rev. A 39, 2000 (1989).

    Article  ADS  Google Scholar 

  15. V. I. Oseledec, Trudy Mosk. Matem. Obshch. 19, 179 (1968) [English transl. in Trans. Moscow Math. Soc., Vol. 19, American Mathematical Society, Providence, R.I. (1969)].

    MATH  MathSciNet  Google Scholar 

  16. Yu. B. Pesin, Dokl. Akad. Nauk SSSR 226, 774 (1976) [sic].

    MATH  MathSciNet  Google Scholar 

  17. A. A. Brudno, Usp. Mat. Nauk 33, 207 (1978).

    MATH  MathSciNet  Google Scholar 

  18. V. M. Alekseev and M. V. Yakobson, Phys. Rep. 75, 287 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  19. D. V. Anosov and Ya. G. Sinai, Usp. Mat. Nauk 22, 107 (1967).

    MathSciNet  Google Scholar 

  20. G. M. Zaslavskii and B. V. Chirikov, Usp. Fiz. Nauk 105, 3 (1971) [Sov. Phys. Usp. 14, 549 (1972)].

    Google Scholar 

  21. A. Heidmann, J. M. Raimond, S. Reynaud, and N. Zagury, Opt. Commun. 54, 189 (1985).

    ADS  Google Scholar 

  22. G. P. Berman, E. N. Bulgakov, and D. D. Holm, Phys. Rev. A 49, 4943 (1974).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 740–753 (February 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prants, S.V., Kon’kov, L.E. Parametric instability and Hamiltonian chaos in cavity semiclassical electrodynamics. J. Exp. Theor. Phys. 88, 406–414 (1999). https://doi.org/10.1134/1.558810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558810

Keywords

Navigation