Skip to main content
Log in

Pseudogap and symmetry of superconducting order parameter in cuprates

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The phase diagram, nature of the normal state pseudogap, type of the Fermi surface, and behavior of the superconducting gap in various cuprates are discussed in terms of a correlated state with valence bonds. The variational correlated state, which is a band analogue of the Anderson (RVB) states, is constructed using local unitary transformations. Formation of valence bonds causes attraction between holes in the d-channel and corresponding superconductivity compatible with antiferromagnetic spin order. Our calculations indicate that there is a fairly wide range of doping with antiferromagnetic order in isolated CuO2 planes. The shape of the Fermi surface and phase transition curve are sensitive to the value and sign of the hopping interaction t′ between diagonal neighboring sites. In underdoped samples, the dielectrization of various sections of the Fermi boundary, depending on the sign of t′, gives rise to a pseudogap detected in photoemission spectra for various quasimomentum directions. In particular, in bismuth-and yttrium-based ceramics (t′>0), the transition from the normal state of overdoped samples to the pseudogap state of underdoped samples corresponds to the onset of dielectrization on the Brillouin zone boundary near k=(0,π) and transition from “large” to “small” Fermi surfaces. The hypothesis about s-wave superconductivity of La-and Nd-based ceramics has been revised: a situation is predicted when, notwithstanding the d-wave symmetry of the superconducting order parameter, the excitation energy on the Fermi surface does not vanish at all points of the phase space owing to the dielectrization of the Fermi boundary at k x=± k y. The model with orthorhombic distortions and two peaks on the curve of T c versus doping is discussed in connection with experimental data for the yttrium-based ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  ADS  Google Scholar 

  2. D. J. Scalapino, Phys. Rep. 250, 329 (1995).

    Article  Google Scholar 

  3. Z.-X. Shen and D. S. Dessau, Phys. Rep. 253, 1 (1995).

    Article  ADS  Google Scholar 

  4. J. W. Allen, R. Claessen, R. O. Anderson et al., in The Physics of the Hubbard Model, ed. by D. K. Campbel, JMP Carmelo and F. Guinea, Plenum Press, New York (1994).

    Google Scholar 

  5. E. Dagotto and T. M. Rice, Science 271, 618 (1996).

    ADS  Google Scholar 

  6. Yu. A. Izyumov, Usp. Fiz. Nauk 167, 465 (1997).

    Google Scholar 

  7. J. R. Kirtley, C. C. Tsuei, J. Z. Sun et al., Nature (London) 373, 225 (1995).

    Article  ADS  Google Scholar 

  8. D. A. Brawner, C. Mancer, and H. R. Ott, Phys. Rev. B 55, 2788 (1997).

    Article  ADS  Google Scholar 

  9. D. S. Marshall, D. S. Dessau, A. G. Loeser et al., Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  10. A. G. Loeser, Z.-X. Shen, D. S. Dessau et al., Science 273, 325 (1997).

    ADS  Google Scholar 

  11. H. Ding, T. Yokoya, J. C. Campuzano et al., Nature (London) 382, 51 (1996).

    Article  ADS  Google Scholar 

  12. N. Nagaosa, Science 275, 1078 (1997).

    Article  Google Scholar 

  13. S. C. Zhang, Science 275, 1089 (1997).

    MathSciNet  Google Scholar 

  14. R. O. Zaitsev, JETP Lett. 55, 135 (1992); 56, 339 (1992).

    ADS  Google Scholar 

  15. J. E. Hirsch, Phys. Rev. Lett. 54, 1317 (1985).

    Article  ADS  Google Scholar 

  16. A. A. Ovchinnikov, M. Ya. Ovchinnikova, and E. A. Plekhanov, Zh. Éksp. Teor. Fiz. (1998) [JETP 87, 534 (1998).

  17. A. A. Ovchinnikov, M. Ya. Ovchinnikova, and E. A. Plekhanov, JETP Lett. 67, 369 (1998).

    Article  ADS  Google Scholar 

  18. P. W. Anderson, Science 235, 1196 (1987).

    ADS  Google Scholar 

  19. A. A. Ovchinnikov and M. Ya. Ovchinnikova, Zh. Éksp. Teor. Fiz. 110, 342 (1996); 112, 1409 (1997) [JETP 83, 184 (1996); 85, 767 (1997)].

    Google Scholar 

  20. M. C. Gutzwiller, Phys. Rev. A 137, 1726 (1965).

    ADS  MATH  MathSciNet  Google Scholar 

  21. J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. Rev. B 45, 7959 (1992).

    Article  ADS  Google Scholar 

  22. H. B. Schuttler and A. J. Fedro, Phys. Rev. B 45, 7588 (1992).

    ADS  Google Scholar 

  23. A. A. Ovchinnikov and M. Ya. Ovchinnikova, J. Phys.: Condens. Matter 6, 10317 (1994).

  24. D. Duffy and A. Moreo, Phys. Rev. B 52, 15607 (1995).

  25. M. S. Hybertsen, E. B. Stechel, M. Schluter, and D. R. Jennison, Phys. Rev. B 41, 11068 (1990).

    Google Scholar 

  26. J. Yu and A. J. Freeman, J. Electron Spectrosc. Relat. Phenom. 66, 387 (1994).

    Article  Google Scholar 

  27. R. J. Radke and M. R. Norman, Phys. Rev. B 50, 9554 (1994).

    ADS  Google Scholar 

  28. A. R. Kamp and J. R. Schriefer, Phys. Rev. B 42, 7967 (1990).

    ADS  Google Scholar 

  29. E. Dagotto, A. Nazarenko, and A. Boninsegni, Phys. Rev. Lett. 73, 728 (1994).

    Article  ADS  Google Scholar 

  30. S. Haas, Phys. Rev. B 51, 11748 (1995).

    Google Scholar 

  31. J. H. Kim, K. Levin, and A. Auerbach, Phys. Rev. B 39, 11633 (1989).

    Google Scholar 

  32. J. Makert et al., in Physical Properties of High Temperature Superconductors, Vol. I, ed. by D. M. Ginzberg, World Scientific, Singapore (1989).

    Google Scholar 

  33. J. B. Torrance, A. Y. Tokura, A. I. Nazzal et al., Phys. Rev. Lett. 61, 1127 (1988).

    Article  ADS  Google Scholar 

  34. A. G. Sun, A. Truscoff, A. S. Katz et al., Phys. Rev. B 54, 6734 (1996).

    ADS  Google Scholar 

  35. K. A. Kuznetzov, A. G. Sun, B. Chen et al., Phys. Rev. Lett. 79, 3050 (1997).

    ADS  Google Scholar 

  36. H. Takagi, T. Ito, S. Ishabashi et al., Phys. Rev. B 40, 2254 (1989).

    Article  ADS  Google Scholar 

  37. J. L. Peng, S. Y. Li, and R. L. Greene, Phys. Rev. B 43, 13606 (1991).

    Google Scholar 

  38. P. Benard, L. Chen, and A. H. Tremblay, Phys. Rev. B 47, 15217 (1993).

    Google Scholar 

  39. T. E. Mason, G. A. Aepli, S. M. Hayden et al., Phys. Rev. Lett. 71, 919 (1993).

    Article  ADS  Google Scholar 

  40. R. J. Birgenot and J. Chiran, in Physical Properties of High Temperature Superconductors, ed. by D. M. Ginzberg, World Scientific, Singapore (1989).

    Google Scholar 

  41. Q. Si, Y. Zha, K. Levin, and J. P. Lu, Phys. Rev. B 47, 9055 (1993).

    Article  ADS  Google Scholar 

  42. P. B. Littlewood, J. Zaanen, and G. Aepli, Phys. Rev. B 48, 487 (1993).

    Article  ADS  Google Scholar 

  43. J. Yu and A. J. Freeman, J. Electron Spectrosc. Relat. Phenom. 66, 281 (1994).

    Article  Google Scholar 

  44. Y. Sakisaka, J. Electron Spectrosc. Relat. Phenom. 66, 387 (1994).

    Article  Google Scholar 

  45. D. H. King, Z.-X. Shen, D. S. Dessau et al., Phys. Rev. Lett. 70, 3159 (1993).

    ADS  Google Scholar 

  46. A. Bianconi, N. L. Saini, M. Missori et al., Phys. Rev. Lett. 76, 3412 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 649–674 (February 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikov, A.A., Ovchinnikova, M.Y. & Plekhanov, E.A. Pseudogap and symmetry of superconducting order parameter in cuprates. J. Exp. Theor. Phys. 88, 356–369 (1999). https://doi.org/10.1134/1.558804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558804

Keywords

Navigation