Skip to main content
Log in

On accuracy of different cluster models used in describing ordering phase transitions in fcc alloys

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A general formulation of cluster methods applied to calculations of thermodynamic quantities of alloys in terms of renormalizing fields describing interaction between a cluster and its environment is given. We have shown that the well-known cluster variation method and the cluster field method, which was suggested earlier, are special cases of our approach. These methods have been used in calculations of phase diagrams of fcc alloys with L12 and L10 ordering transitions with several realistic interaction models. It turns out that, for all these models, the simple tetrahedron version of the cluster field method suggested in this paper describes the phase diagrams almost as accurately as more complicated cluster variation techniques. Possible applications of the tetrahedron version of the cluster field method to inhomogeneous states and kinetics of phase transitions in fcc alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. de Fontaine, Solid State Phys. 34, 74 (1979).

    Google Scholar 

  2. P. E. A. Turchi, in Intermetallic Compounds, Vol. 1, Principles, J. H. Westbrook and R. L. Fleischer (Eds.), Wiley, New York (1994), p. 21.

    Google Scholar 

  3. A. Zunger, in Statics and Dynamics of Alloy Phase Transformations, Vol. 319 of NATO Advanced Study Institute, Series B: Physics, A. Gonis and P. E. A. Turchi (Eds.), Plenum, New York (1994), p. 361.

    Google Scholar 

  4. A. Finel, in Statics and Dynamics of Alloy Phase Transformations, Vol. 319 of NATO Advanced Study Institute, Series B: Physics, A. Gonis and P. E. A. Turchi (Eds.), Plenum, New York (1994), p. 495–540.

    Google Scholar 

  5. K. Binder, in Statics and Dynamics of Alloy Phase Transformations, Vol. 319_of NATO Advanced Study Institute, Series B: Physics, A. Gonis and P. E. A. Turchi (Eds.), Plenum, New York (1994), p. 467–493.

    Google Scholar 

  6. L. Q. Chen, Y. Z. Wang, and A. G. Khachaturyan, in Statics and Dynamics of Alloy Phase Transformations, Vol. 319 of NATO Advanced Study Institute, Series B: Physics, A. Gonis and P. E. A. Turchi (Eds.), Plenum, New York (1994), p. 587–604.

    Google Scholar 

  7. K. D. Belashchenko, V. Yu. Dobretsov, and V. G. Vaks, in Properties of Complex Inorganic Solids, Proc. of 1st Intern. Alloy Conf., A. Gonis, A. Meike, and P. E. A. Turchi (Eds.), Plenum, New York (1997), p. 101.

    Google Scholar 

  8. R. Kikuchi, Phys. Rev. 81, 988 (1951).

    ADS  MATH  MathSciNet  Google Scholar 

  9. T. Morita, J. Math. Phys. 13, 115 (1972).

    Google Scholar 

  10. J. M. Sanchez and D. de Fontaine, Phys. Rev. B 17, 2926 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Mohri, J. M. Sanchez, and D. de Fontaine, Acta Metall. 33, 1171 (1985).

    Google Scholar 

  12. J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica A 128, 334 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Finel, Thése de Doctorat d’Etat, Universite’ Paris VI, Note Technique ONERA 1987-3 (1987).

  14. F. Ducastelle, in Cohesion and Structures, Vol. 3, F. R. de Boer and D. G. Pettifor (Eds.), North Holland, Amsterdam (1991), Ch. 4.

    Google Scholar 

  15. V. G. Vaks and V. V. Kamyshenko, Izv. Akad. Nauk SSSR, Ser. Metally No. 2, 121 (1990).

  16. B. H. Kear, Sci. Am., No. 12, 99 (1986).

  17. V. G. Vaks, JETP Lett. 63, 471 (1996).

    Article  ADS  Google Scholar 

  18. K. D. Belashchenko and V. G. Vaks, J. Phys. F 10, 1965 (1998).

    Google Scholar 

  19. V. G. Vaks, N. E. Zein, V. I. Zinenko, and V. G. Orlov, Zh. Éksp. Teor. Fiz. 87, 2030 (1984) [Sov. Phys. JETP 60, 1171 (1984)].

    Google Scholar 

  20. V. G. Vaks and V. G. Orlov, Fiz. Tverd. Tela 28, 3627 (1986) [Sov. Phys. Solid State 28, 2045 (1986)].

    Google Scholar 

  21. V. G. Vaks and V. G. Orlov, J. Phys. F 18, 883 (1988).

    ADS  Google Scholar 

  22. V. G. Vaks and V. I. Zinenko, J. Phys.: Condens. Matter 1, 9085 (1989); 3, 4533 (1991).

    ADS  Google Scholar 

  23. V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys. F 18, 1641 (1988).

    ADS  Google Scholar 

  24. V. G. Vaks, N. E. Zein, V. V. Kamyshenko, and Yu. V. Tkachenko, Fiz. Tverd. Tela 30, 477 (1988) [Sov. Phys. Solid State 30, 270 (1988)].

    Google Scholar 

  25. V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys.: Condens. Matter 1, 2115 (1989).

    ADS  Google Scholar 

  26. V. G. Vaks and V. V. Kamyshenko, J. Phys.: Condens. Matter 3, 1351 (1991).

    ADS  Google Scholar 

  27. C. N. Yang, J. Chem. Phys. 13, 66 (1945).

    Article  Google Scholar 

  28. Y. Y. Li, J. Chem. Phys. 17, 447 (1949).

    Google Scholar 

  29. V. Yu. Dobretsov, V. G. Vaks, and G. Martin, Phys. Rev. B 54, 3227 (1996).

    Article  ADS  Google Scholar 

  30. K. D. Belashchenko and V. G. Vaks, Zh. Éksp. Teor. Fiz. 112, 714 (1997) [JETP 85, 390 (1997)].

    Google Scholar 

  31. J. Dennis and R. Schnabel, Numerical Methods of Unconditional Optimization and Solution of Nonlinear Equations [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  32. W. H. Press, S. A. Teukolsky, W. T. Vettering et al., Numerical Recipes in C, Camb. Univ. Press (1996), Ch. 10.

  33. A. Finel, V. Mazauric, and F. Ducastelle, Phys. Rev. Lett. 65, 1016 (1990).

    Article  ADS  Google Scholar 

  34. F. Chassagne, M. Bessiere, Y. Calvayrac et al., Acta Metall. 37, 2329 (1989).

    Google Scholar 

  35. A. G. Khachaturyan, Theory of Phase Transformations and Structure of Solid Solutions [in Russian], Nauka, Moscow (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 158–179 (January 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaks, V.G., Samolyuk, G.D. On accuracy of different cluster models used in describing ordering phase transitions in fcc alloys. J. Exp. Theor. Phys. 88, 89–100 (1999). https://doi.org/10.1134/1.558769

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558769

Keywords

Navigation