Skip to main content
Log in

Radiation breakdown in silicon wafers

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Radiation breakdown in silicon slabs is observed and studied as revealed in anomalous behavior of the dose characteristics of their radiation defects when the radiative intensity is varied. A theory is constructed for reversible radiation breakdown due to the bistability which develops in a gas of radiation vacancies when the gas can be regarded as quasi-two-dimensional. In order to explain the exponential saturation of the dose characteristics as the irradiation intensity is increased, scenarios are proposed in which different forms of the constituent radiation defects develop. Some parameters of the bistable gas of primary vacancies are estimated, including diffusion coefficients, dimensions of inhomogeneity regions, and the rate of movement of the stratification line. On the whole, satisfactory agreement with experiment is obtained. Discrepancies between the diffusion coefficient for neutral vacancies obtained here and in the literature are attributed to the role of interband recombination accompanying radiation defect formation during electron bombardment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Lee, J. W. Corbett, and K. L. Brower, Phys. Status Solidi A 41, 637 (1977).

    Google Scholar 

  2. V. V. Emtsev, T. V. Mashovets, and V. V. Mikhnovich, Fiz. Tekh. Poluprovodn. 27, 708 (1993) [Semiconductors 27, 390 (1993)].

    Google Scholar 

  3. A. I. Baranov, N. I. Boyarkina, and A. V. Vasil’ev, Fiz. Tekh. Poluprovodn. 29, 1570 (1995) [Semiconductors 29, 817 (1995)].

    Google Scholar 

  4. E. M. Verbitskaya, V. K. Eremin, A. M. Ivanov et al., Fiz. Tekh. Poluprovodn. 31, 235 (1997) [Semiconductors 31, 127 (1997)].

    Google Scholar 

  5. S. K. Estreicher, J. Weber, A. Derecskei-Kovacs et al., Phys. Rev. B 55, 5037 (1997).

    Article  ADS  Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Fluid Mechanics 2nd ed., Pergamon, New York (1987).

    Google Scholar 

  7. G. D. Watkins, in Deep Centers in Semiconductors, S. T. Pantelides (Ed.), Gordon and Breach, New York (1986), p. 147.

    Google Scholar 

  8. S. E. Mal’khanov, Fiz. Tekh. Poluprovodn. 29, 725 (1995) [Semiconductors 29, 377 (1995)].

    Google Scholar 

  9. G. W. Anderson, M. C. Hanf, P. R. Norton et al., Appl. Phys. Lett. 66, 1123 (1995).

    Article  ADS  Google Scholar 

  10. V. N. Bessolov, E. V. Konenkova, M. V. Lebedev et al., in Third All-Russian Conference on the Physics of Semiconductors. Abstracts [in Russian], FIAN, Moscow (1997), p. 304.

    Google Scholar 

  11. G. W. Anderson, P. Ma, and P. R. Norton, J. Appl. Phys. 79, 5641 (1996).

    ADS  Google Scholar 

  12. V. V. Yuzhakov, Hsueh-Chia Chang, and A. E. Miller, Phys. Rev. B 56, 12608 (1997).

    Google Scholar 

  13. N. V. Kolesnikov, V. N. Lomasov, and S. E. Mal’khanov, Fiz. Tekh. Poluprovodn. 23, 1921 (1989) [Sov. Phys. Semicond. 23, 1191 (1989)]; Fiz. Tekh. Poluprovodn. 24, 372 (1990) [Sov. Phys. Semicond. 24, 230 (1990)].

    Google Scholar 

  14. N. T. Bagraev, D. E. Onopko, A. I. Ryskin et al., Fiz. Tekh. Poluprovodn. 30, 1855 (1996) [Semiconductors 30, 970 (1996)].

    Google Scholar 

  15. J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, New York (1987).

    Google Scholar 

  16. I. P. Ipatova, V. G. Malyshkin, A. N. Starodubtsev et al., in Third All-Russian Conference on the Physics of Semiconductors. Abstracts [in Russian], FIAN, Moscow (1997), p. 272.

    Google Scholar 

  17. B. S. Bokshtein, Atoms Wander through a Crystal [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  18. N. P. Kalashnikov, Coherent Interactions of Charged Particles in Single Crystals [in Russian], Atomizdat, Moscow (1981), Ch. 2.

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Nonrelativistic Theort, 3rd ed., Pergamon, New York (1977), Ch. 6.

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Statistical Physics. Part I [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  21. N. V. Kolesnikov, V. N. Lomasov, S. E. Mal’khanov et al., Fiz. Tekh. Poluprovodn. 18, 1496 (1984) [Sov. Phys. Semicond. 18, 936 (1984)].

    Google Scholar 

  22. S. E. Mal’khanov, Fiz. Tekh. Poluprovodn. 28, 1431 (1994) [Semiconductors 28, 804 (1994)].

    Google Scholar 

  23. V. A. Voitenko and S. E. Mal’khanov, Zh. Éksp. Teor. Fiz. 112, 707 (1997) [JETP 85, 386 (1997)].

    Google Scholar 

  24. J. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press, Cambridge (1974).

    Google Scholar 

  25. A. K. Gutakovskii, L. I. Fedina, A. L. Aseev et al., in Third All-Russian Conference on the Physics of Semiconductors. Abstracts [in Russian], FIAN, Moscow (1997), p. 267.

    Google Scholar 

  26. A. N. Safonov, E. C. Lightowlers, and G. Davies, Phys. Rev. B 56, 15517 (1997).

    Google Scholar 

  27. N. N. Ledentsov, in Proceedings of 23rd International Conference on the Physics of Semiconductors, M. Scheffler and R. Zimmermann (eds.), Vol. 1, World Scientific, Singapore (1996), p. 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 1067–1078 (September 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitenko, V.A., Mal’khanov, S.E. Radiation breakdown in silicon wafers. J. Exp. Theor. Phys. 87, 581–587 (1998). https://doi.org/10.1134/1.558696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558696

Keywords

Navigation