Skip to main content
Log in

Magnetically induced spatial dispersion in the cubic magnetic semiconductors Cd1−x MnxTe

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In the transverse geometry we have detected birefringence that is linear in the magnetic field B and the light wave vector k in the cubic magnetic semiconductors Cd1−x MnxTe (0⩽x⩽0.52). The effect was found to be large, ∼1 (deg cm−1 T−1), and highly anisotropic, in contrast to the Faraday and Voigt effects. The phenomenon is represented by terms of type γ ijklBkkl in the permittivity tensor ε ij and can be described by two parameters, A and g. Spectral studies have shown that the normalized parameters A/x and g/x are independent of x, i.e., the effect can be related to the Mn2+ ions. Below the edge E g of the forbidden band, the dispersion of A is described by a (E gE)−1.4-dependence, while the dispersion of g is nil. Theoretical analysis has shown that the spectral curves for A and g can be explained by the special features of the dispersion laws for electrons and holes (features related to the fact that there is no inversion center) and by the dependence of the parameters of the exchange interaction on the electron wave vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  2. P. I. Nikitin and A. I. Savchuk, Usp. Phys. Nauk 160, No. 2, 167 (1990) [Sov. Phys. Usp. 33, 974 (1990)].

    Google Scholar 

  3. Eunsoon Oh, D. U. Bartholomew, A. K. Ramdas, J. K. Furdyna, and U. Debska, Phys. Rev. B 44, 10 551 (1991).

  4. S. Hugonnard-Bruyère, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, Phys. Rev. B 50, 2200 (1994).

    Article  ADS  Google Scholar 

  5. C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Solid State Commun. 92, 929 (1994).

    Article  Google Scholar 

  6. I. M. Boswarva, R. E. Howard, and A. B. Lidiard, Proc. R. Soc. London, Ser. A 269, 125 (1962).

    ADS  Google Scholar 

  7. J. G. Mavroides, in Optical Properties of Solids, F. Abelès (Ed.), North-Holland, Amsterdam (1972).

    Google Scholar 

  8. D. L. Portigal and E. Burstein, J. Phys. Chem. Solids 32, 603 (1971).

    Google Scholar 

  9. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, 2nd ed., Springer-Verlag, Berlin (1984).

    Google Scholar 

  10. P. Etchegoin, A. Fainstein, P. Santos, L. C. Lew Yan Voon, and M. Cardona, Solid State Commun. 92, 505 (1994).

    Article  Google Scholar 

  11. J. J. Hopfield and D. G. Thomas, Phys. Rev. Lett. 4, 357 (1960).

    Article  ADS  Google Scholar 

  12. E. F. Gross, B. P. Zakharchenya, and O. V. Konstantinov, Fiz. Tverd. Tela (Leningrad) 3, 305 (1961) [Sov. Phys. Solid State 3, 221 (1961)].

    Google Scholar 

  13. E. L. Ivchenko, V. P. Kochereshko, G. V. Mikhailov, and I. N. Ural’tsev, JETP Lett. 37, 164 (1983); Phys. Status Solidi B 121, 221 (1984).

    ADS  Google Scholar 

  14. O. V. Gogolin, V. A. Tsvetkov, and E. G. Tsitsishvili, Zh. Éksp. Teor. Fiz. 87, 1038 (1984) [Sov. Phys. JETP 60, 593 (1984)].

    Google Scholar 

  15. E. G. Tsitsishvili, Fiz. Tekh. Poluprovodn. 20, 650 (1986) [Sov. Phys. Semicond. 20, 412 (1986)].

    Google Scholar 

  16. R. V. Pisarev, V. V. Krichevtsov, and V. V. Pavlov, Phase Transit. 37, 63 (1991).

    Google Scholar 

  17. V. V. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and V. N. Gridnev, Phys. Rev. Lett. 76, 4628 (1996).

    Article  ADS  Google Scholar 

  18. V. N. Gridnev, V. V. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, JETP Lett. 65, 68 (1997).

    Article  ADS  Google Scholar 

  19. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics, Mir Publishers, Moscow (1982).

    Google Scholar 

  20. J. Ferré and G. A. Gehring, Rep. Prog. Phys. 47, 526 (1984).

    Google Scholar 

  21. É. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela (Leningrad) 3, 1735 (1961) [Sov. Phys. Solid State 3, 1257 (1961)].

    Google Scholar 

  22. Y.-F. Chen, N. Dobrowolska, J. K. Furdyna, and S. Rodriguez, Phys. Rev. B 32, 890 (1985).

    ADS  Google Scholar 

  23. J. A. Gaj, J. Ginter, and R. R. Galazka, Phys. Status Solidi B 89, 655 (1978).

    Google Scholar 

  24. J. A. Gaj, in Diluted Magnetic Semiconductors, Vol. 25 of Semiconductors and Semimetals, J. K. Furdyna and J. Kossut (Eds.), Academic Press, Boston (1988), p. 275.

    Google Scholar 

  25. E. Kane, in Semiconductors and Semimetals, Vol. 1, R. K. Willardson and A. C. Beer (Eds.), Academic Press, New York (1966), p. 75.

    Google Scholar 

  26. N. R. Ogg, Proc. Phys. Soc. London B 89, 431 (1966).

    Google Scholar 

  27. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York (1974).

    Google Scholar 

  28. A. K. Bhattacharjee, Phys. Rev. B 41, 5696 (1990).

    ADS  MathSciNet  Google Scholar 

  29. A. G. Aronov and A. S. Ioselevich, Fiz. Tverd. Tela (Leningrad) 20, 2615 (1978) [Sov. Phys. Solid State 20, 1511 (1978)].

    Google Scholar 

  30. D. T. F. Marple, J. Appl. Phys. 35, 539 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 1018–1033 (September 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krichevtsov, B.B., Pisarev, R.V., Rzhevskii, A.A. et al. Magnetically induced spatial dispersion in the cubic magnetic semiconductors Cd1−x MnxTe. J. Exp. Theor. Phys. 87, 553–562 (1998). https://doi.org/10.1134/1.558693

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558693

Keywords

Navigation