Skip to main content
Log in

Hund’s Case (a)-case (b) transition in the singlet-triplet absorption spectrum of pyrazine in a supersonic jet

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytic expression is derived for calculating the intensities of individual spin-rovibronic lines in the fully resolved gas phase electronic spectrum of a polyatomic molecule, in which one of the zero-order electronic states is a triplet state. The expression is employed to calculate the effect of fine structure splitting on the singlet-triplet absorption spectrum of pyrazine using the parameters available from experiment. A transition from Hund’s coupling Case (a) to Case (b) on going from low J to high J rotational levels is predicted to occur at a moderate resolution of a few hundred MHz. The effect is more pronounced in pyrazine-d 4 and the pyrazine-argon van der Waals complex owing to their larger mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Medvedev and V. I. Osherov, Radiationless Transitions in Polyatomic Molecules, Springer, Berlin (1995).

    Google Scholar 

  2. O. Sekiguchi, N. Ohta, and H. Baba, Laser Chem. 7, 213 (1987).

    Google Scholar 

  3. J. Kommandeur, W. A. Majewski, W. L. Meerts, and D. W. Pratt, Annu. Rev. Phys. Chem. 38, 433 (1987).

    Google Scholar 

  4. J. Kommandeur, Adv. Chem. Phys. 70, 1 (1988).

    Google Scholar 

  5. A. Amirav, J. Phys. Chem. 92, 3725 (1988).

    Google Scholar 

  6. E. S. Medvedev, Usp. Fiz. Nauk 161, 31 (1991) [Sov. Phys. Usp. 34,16 (1991)].

    Google Scholar 

  7. E. S. Medvedev and D. W. Pratt, J. Chem. Phys. 105, 3366 (1996).

    Article  ADS  Google Scholar 

  8. The Triplet State, A. B. Zahlan (Ed.), Cambridge University Press, Cambridge (1963).

    Google Scholar 

  9. D. M. Burland and J. Schmidt, Mol. Phys. 22, 19 (1971).

    Google Scholar 

  10. M. A. El-Sayed, in MTP International Review of Science, Physical Chemistry Series 1, D. A. Ramsay (Ed.), Butterworths, London (1972), Vol. 3, p. 119.

    Google Scholar 

  11. A. A. Gwaiz and M. A. El-Sayed, Chem. Phys. Lett. 19, 11 (1973).

    Article  ADS  Google Scholar 

  12. U. P. Wild, in Triplet States, Springer, Berlin (1975), Vol. 2.

    Google Scholar 

  13. H. Hirt, Spectrochim. Acta 12, 114 (1958).

    Google Scholar 

  14. L. Goodman and M. Kasha, J. Mol. Spectrosc. 2, 58 (1958).

    Article  ADS  Google Scholar 

  15. R. M. Hochstrasser and C. Marzzacco, J. Chem. Phys. 49, 971 (1968).

    Google Scholar 

  16. K. K. Innes and L. E. Giddings, Jr., Discuss. Faraday Soc. 35, 192 237 (1963).

    Google Scholar 

  17. A. E. Douglas and M. Milton, Discuss. Faraday Soc. 35, 235 (1963).

    Article  Google Scholar 

  18. G. Fisher, Chem. Phys. Lett. 79, 573 (1981).

    Article  ADS  Google Scholar 

  19. E. Villa, M. Terazima, and E. C. Lim, Chem. Phys. Lett. 129, 336 (1986).

    Article  ADS  Google Scholar 

  20. L. H. Spangler, Y. Matsumoto, and D. W. Pratt, J. Phys. Chem. 87, 4781 (1983).

    Article  Google Scholar 

  21. L. H. Spangler and D. W. Pratt, J. Chem. Phys. 84, 4789 (1986).

    Article  ADS  Google Scholar 

  22. L. H. Spangler, D. W. Pratt, and F. W. Birss, J. Chem. Phys. 85, 3229 (1986).

    Article  ADS  Google Scholar 

  23. J. L. Tomer, K. W. Holtzclaw, D. W. Pratt, and L. H. Spangler, J. Chem. Phys. 88, 1528 (1988).

    Article  ADS  Google Scholar 

  24. A. Penner and A. Amirav, J. Phys. Chem. 92, 5079 (1988).

    Google Scholar 

  25. A. Penner, Y. Oreg, E. Villa, E. C. Lim, and A. Amirav, Chem. Phys. Lett. 150, 243 (1988).

    Article  ADS  Google Scholar 

  26. K. W. Holtzclaw, L. H. Spangler, and D. W. Pratt, Chem. Phys. Lett. 161, 347 (1989).

    Article  Google Scholar 

  27. O. Sneh, D. Dünn-Kittelplon, and O. Cheshnovsky, J. Chem. Phys. 91, 7331 (1989); I. Becker and O. Cheshnovsky, J. Chem. Phys. 101, 3649 (1994).

    ADS  Google Scholar 

  28. S. Hillenbrand, L. Zhu, and P. M. Johnson, J. Chem. Phys. 95, 2237 (1991).

    Article  ADS  Google Scholar 

  29. J. W. Sidman, J. Mol. Spectrosc. 2, 33 (1958).

    Article  Google Scholar 

  30. E. Clementi and M. Kasha, J. Mol. Spectrosc. 2, 297 (1958).

    Article  ADS  Google Scholar 

  31. L. Goodman and V. G. Krishna, Rev. Mod. Phys. 35, 541,735 (1963).

    ADS  Google Scholar 

  32. M. A. El-Sayed, in Molecular Luminescence, E. C. Lim (Ed.), Benjamin, New York (1969), p. 715.

    Google Scholar 

  33. M. A. El-Sayed, J. Chem. Phys. 38, 2834 (1963).

    Google Scholar 

  34. D. S. McClure, J. Chem. Phys. 20, 682 (1952).

    Article  Google Scholar 

  35. B. J. Cohen and L. Goodman, J. Chem. Phys. 46, 713 (1967).

    Article  Google Scholar 

  36. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, Van Nostrand, Princeton (1964), p. 231.

    Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed., Pergamon, Oxford (1981), p. 319.

    Google Scholar 

  38. J. T. Hougen, Can. J. Phys. 42, 433 (1964).

    Google Scholar 

  39. F. Creutzberg and J. T. Hougen, Can. J. Phys. 45, 1363 (1967).

    ADS  Google Scholar 

  40. C. di Lauro, J. Mol. Spectrosc. 35, 461 (1970).

    ADS  Google Scholar 

  41. J. H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).

    ADS  MATH  Google Scholar 

  42. W. T. Raynes, J. Chem. Phys. 41, 3020 (1964).

    Article  Google Scholar 

  43. H. Sternlicht, J. Chem. Phys. 38, 2316 (1963).

    Google Scholar 

  44. K. K. Innes, I. G. Ross, and W. R. Moomaw, J. Mol. Spectrosc. 132, 492 (1988).

    ADS  Google Scholar 

  45. W. E. Howard and E. W. Schlag, in Radiationless Transitions, S. H. Lin (ed.), Academic, New York (1980), p. 81.

    Google Scholar 

  46. L. Goodman and V. G. Krishna, J. Chem. Phys. 37, 2721 (1962).

    Article  Google Scholar 

  47. P. R. Bunker, Molecular Symmetry and Spectroscopy, Academic, New York (1979).

    Google Scholar 

  48. D. A. Kleier, R. L. Martin, W. R. Wadt, and W. R. Moomaw, J. Am. Chem. Soc. 104, 60 (1982).

    Article  Google Scholar 

  49. D.-L. Joo, D. J. Clouthier, R. H. Judge, and D. C. Moule, J. Chem. Phys. 102, 7351 (1995).

    ADS  Google Scholar 

  50. Th. Weber, A. von Bargen, E. Riedle, and H. J. Neusser, J. Chem. Phys. 92, 90 (1990); Th. Weber and H. J. Neusser, J. Chem. Phys. 94, 7689 (1991).

    ADS  Google Scholar 

  51. P. M. Weber and S. A. Rice, J. Chem. Phys. 88, 6120 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 63–90 (July 1998)

Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, E.S., Pratt, D.W. Hund’s Case (a)-case (b) transition in the singlet-triplet absorption spectrum of pyrazine in a supersonic jet. J. Exp. Theor. Phys. 87, 35–50 (1998). https://doi.org/10.1134/1.558642

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558642

Keywords

Navigation