Skip to main content
Log in

Microscopic calculations of ferroelectric instability in perovskite crystals

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

First-principles calculations are performed relating to the stability of a series of perovskite crystals with respect to transition to the ferroelectric and the antiferroelectric state. The calculations employ the generalized Gordon-Kim method, in which the total charge density of an ionic crystal is represented as a superposition of the densities of the individual ions. In the spirit of the nonequilibrium thermodynamics of Leontovich the charge density of an individual ion is calculated in the presence of external auxiliary fields which deform this density. Multipole deformations up to quadrupole are taken into account. The actual magnitude of the deformation is found by minimizing the total energy of the crystal in the Thomas-Fermi-Dirac approximation. The calculated values of the ion shifts in the ferroelectric phase for BaTiO3, and also the electron contribution to the dielectric constant ε and the dynamic Born effective charges Z eff are found to be in good agreement with the experimental data. The proposed method allows one to obtain an analytical expression for ε , Z eff, and the dynamic vibration matrix. It is shown that these expressions formally coincide with the expressions arising in the phenomenological models of the polarized and deformed ion. Analysis of the expressions obtained confirms the validity of the classical theory of ferroelectrics of displacement type for perovskite crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1997).

    Google Scholar 

  2. D. E. Cox and A. W. Seight, Solid State Commun. 19, 969 (1976).

    Article  Google Scholar 

  3. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics [in Russian] (Nauka, Moscow, 1973).

    Google Scholar 

  4. F. I. Skanavi, Zh. Éksp. Teor. Fiz. 17, 399 (1947).

    Google Scholar 

  5. J. C. Slater, Phys. Rev. 78, 748 (1950).

    Article  ADS  MATH  Google Scholar 

  6. V. L. Ginzburg, Usp. Fiz. Nauk 38, 490 (1949).

    Google Scholar 

  7. F. Anderson, in Physics of Dielectrics [in Russian] (published by the Academy of Sciences of the USSR, Moscow, 1960).

    Google Scholar 

  8. W. Cochran, Adv. Phys. 9, 387 (1960).

    ADS  MATH  Google Scholar 

  9. O. E. Kvyatkovskii, Fiz. Tverd. Tela 27, 63 (1985) [Sov. Phys. Solid State 27, 35 (1985)].

    Google Scholar 

  10. O. E. Kvyatkovskii and E. G. Maksimov, Usp. Fiz. Nauk 154, 3 (1988) [Sov. Phys. Usp. 31, 1 (1988)].

    Google Scholar 

  11. O. E. Kvyatkovskii, Fiz. Tverd. Tela 35, 2154 (1993) [Phys. Solid State 35, 1071 (1993)].

    Google Scholar 

  12. B. Szigeti, Trans. Faraday Soc. 45, Pt. 2, 155 (1949).

    Article  Google Scholar 

  13. R. E. Cohen and H. Krakauer, Phys. Rev. B 42, 6416 (1990).

    ADS  Google Scholar 

  14. R. E. Cohen and H. Krakauer, Ferroelectrics 136, 65 (1992).

    Google Scholar 

  15. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828 (1994).

    Article  ADS  Google Scholar 

  16. W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994).

    Article  ADS  Google Scholar 

  17. R. Resta, M. Pasternak, and A. Baldereschi, Phys. Rev. Lett. 70, 1010 (1993).

    Article  ADS  Google Scholar 

  18. J. X. Axe, Phys. Rev. 157, 429 (1967).

    ADS  Google Scholar 

  19. W. Zhong and D. Vanderbilt, Phys. Rev. Lett. 74, 2587 (1995).

    Article  ADS  Google Scholar 

  20. O. V. Ivanov and E. G. Maksimov, Phys. Rev. Lett. 69, 108 (1992).

    Article  ADS  Google Scholar 

  21. O. V. Ivanov and E. G. Maksimov, Zh. Éksp. Teor. Fiz. 108, 1841 (1995) [JETP 81, 1008 (1995)].

    Google Scholar 

  22. O. V. Ivanov and E. G. Maksimov, Solid State Commun. 97, 163 (1996).

    Article  Google Scholar 

  23. E. G. Maksimov, D. A. Shport, and O. V. Ivanov, Solid State Commun. 101, 393 (1997).

    Article  Google Scholar 

  24. O. V. Ivanov, E. G. Maksimov, and I. I. Mazin, Solid State Commun. 76, 1267 (1990).

    Article  Google Scholar 

  25. R. G. Gordon and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972).

    Article  Google Scholar 

  26. Y. S. Kim and R. G. Gordon, Phys. Rev. B 9, 3548 (1974).

    ADS  Google Scholar 

  27. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    ADS  MathSciNet  Google Scholar 

  28. D. R. Yoder and R. Colella, Phys. Rev. B 25, 2545 (1982).

    Article  ADS  Google Scholar 

  29. R. G. Gordon and R. Lesar, Adv. Quantum Chem. 21, 341 (1990).

    Google Scholar 

  30. R. E. Watson, Phys. Rev. 111, 1108 (1958).

    Article  ADS  Google Scholar 

  31. M. A. Leontovich, Introduction to Thermodynamics. Statistical Physics [in Russian] (Nauka, Moscow, 1983).

    Google Scholar 

  32. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1113 (1965).

    MathSciNet  Google Scholar 

  33. R. M. Sternheimer, Phys. Rev. 96, 951 (1954).

    Article  ADS  MATH  Google Scholar 

  34. C. Muhlhausen and R. G. Gordon, Phys. Rev. B 23, 900 (1981).

    Article  ADS  Google Scholar 

  35. O. V. Ivanov, POSIM User’s Guide, Technical Notes of the Lebedev Physical Institute (Moscow, 1996).

  36. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  ADS  Google Scholar 

  37. K. H. Wierich and R. Siems, Z. Phys. B 61, 63 (1985).

    Google Scholar 

  38. M. Wilson, U. Schonberger, and M. W. Finnis, Phys. Rev. B 54, 9147 (1996).

    ADS  Google Scholar 

  39. L. L. Boyer, M. J. Mehl, J. W. Flocken and J. R. Hardy, J. Appl. Phys. 24, Suppl. 24-2, 204 (1985).

    Google Scholar 

  40. R. Yu and H. Krakauer, Phys. Rev. Lett. 74, 4067 (1995).

    ADS  Google Scholar 

  41. K. M. Rabe and J. D. Jonnopoulos, Phys. Rev. B 32, 2302 (1985).

    Article  ADS  Google Scholar 

  42. T. Hidaka, Phys. Rev. B 20, 2769 (1979).

    Article  ADS  Google Scholar 

  43. N. Kristoffel and P. Konsin, Phys. Status Solidi B 149, 1 (1988).

    Google Scholar 

  44. Y. Girshberg and Y. Yacoby, Solid State Commun. 103, 425 (1997).

    Article  Google Scholar 

  45. A. Huler, Solid State Commun. 7, 589 (1969).

    Google Scholar 

  46. W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. B 52, 6301 (1995).

    Article  ADS  Google Scholar 

  47. K. Kunc, M. Balkanski, and M. A. Nusimovici, Phys. Rev. B 12, 4346 (1975).

    Article  ADS  Google Scholar 

  48. G. D. Mahan, Phys. Rev. 153, 983 (1967).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 333–358 (July 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, O.V., Shport, D.A. & Maksimov, E.G. Microscopic calculations of ferroelectric instability in perovskite crystals. J. Exp. Theor. Phys. 87, 186–199 (1998). https://doi.org/10.1134/1.558640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558640

Keywords

Navigation