Skip to main content
Log in

Plasma waves in a nonideal plasma

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper shows how the concepts commonly used for a Debye plasma—Landau damping, collisional damping, short-range and long-range collisions, and plasma waves—must be revised to describe a nonideal electron-ion plasma. The degrees of freedom of a nonideal plasma are divided into collective and individual. The increase and saturation of the fraction of collective degrees of freedom as the coupling constant increases is discussed. The Tatarskii approach for a system of coupled oscillators makes it possible to model the collective degrees of freedom of a nonideal plasma by a set of Langevin oscillators in a thermostat. The correlation energy and the energy of the plasma waves are found. The concepts developed here made it possible to determine the dispersion of the plasma waves and their damping. The effect of damping on the discrepancy between the position of the maximum of the dynamic structure factor and the real part of the solution of the dispersion equation is considered. The effective collision frequency of the individual degrees of freedom (the electrons) is estimated, taking into account both short-range pairwise scattering and scattering at plasma waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Lifshitz and L. P. Pitayevsky, Physical Kinetics (Nauka, Moscow, 1979; Pergamon Press, Oxford, 1981).

    Google Scholar 

  2. Yu. L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Nauka, Moscow, 1975; Pergamon Press, Oxford, 1982).

    Google Scholar 

  3. B. B. Kadomtsev, Collective Phenomena in a Plasma (Nauka, Moscow, 1976).

    Google Scholar 

  4. L. A. Artsimovich and R. Z. Sagdeev, Plasma Physics for Physicists (Atomizdat, Moscow, 1979).

    Google Scholar 

  5. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).

    Google Scholar 

  6. B. Ya’akobi and G. Bekefi, Phys. Lett. 130, 539 (1969).

    Google Scholar 

  7. M. Skowronek, J. Rous, A. Goldstein, and F. Cabannes, Phys. Fluids 13, 378 (1970).

    Article  Google Scholar 

  8. I. Ya. Dikhter and V. A. Zeigranik, Dokl. Akad. Nauk SSSR 227, 656 (1976).

    ADS  Google Scholar 

  9. É. I. Asinovskii and A. A. Valuev, Teplofiz. Vys. Temp. 18, 1318 (1980).

    Google Scholar 

  10. G. E. Norman and A. A. Valuev, in Proceedings of the Twelfth IGPIG, Eindhoven, 1975, p. 257.

  11. A. A. Valuev, Teplofiz. Vys. Temp. 15, 1143 (1977).

    ADS  Google Scholar 

  12. G. E. Norman and A. A. Valuev, Plasma Phys. 21, 531 (1979).

    Article  ADS  Google Scholar 

  13. J. P. Hansen and I. R. McDonald, Phys. Rev. A 23, 2041 (1981).

    Article  ADS  Google Scholar 

  14. Yu. K. Kurilenkov and A. A. Valuev, Plasma Phys. 24, 529 (1984).

    Google Scholar 

  15. V. M. Adamyan and I. M. Tkachenko, Teplofiz. Vys. Temp. 21, 417 (1983).

    ADS  Google Scholar 

  16. K. I. Golden, Phys. Rev. A 35, 5278 (1987).

    Article  ADS  Google Scholar 

  17. G. Kalman, in Physics of Nonideal Plasmas. Teubner-Texte zur physik, vol. 26, Eds. W. Ebeling, A. Forster, and R. Radtke (Teubner, Stuttgart, 1992), p. 167.

    Google Scholar 

  18. G. Kalman and K. I. Golden, Phys. Rev. A 41, 5516 (1990).

    Article  ADS  Google Scholar 

  19. J. Ortner and I. M. Tkachenko, Phys. Rev. A 46, 7882 (1992).

    Article  ADS  Google Scholar 

  20. F. A. Gutierrez and M. A. Girardeau, Phys. Rev. A 42, 936 (1990).

    ADS  Google Scholar 

  21. D. Bohm, General Theory of Collective Variables (Moscow, Mir, 1964).

    Google Scholar 

  22. D. N. Zubarev, Dok. Akad. Nauk SSSR 95, 757 (1954).

    MATH  MathSciNet  Google Scholar 

  23. A. S. Kaklyugin, Teplofiz. Vys. Temp. 23, 217 (1985).

    Google Scholar 

  24. A. S. Kaklyugin, in Abstracts of Reports of the Fourth All-Union Conference on Gas-Discharge Physics, Makhachkala, 1988 (DGU Press, Makhachkala, 1988), p. 33.

    Google Scholar 

  25. A. A. Valuev, A. S. Kaklyugin, and G. É. Norman, in Radiation Thermodynamics, vol. 1, Ed. Yu. S. Protasov (Énergoatomizdat, Moscow, 1991), p. 396.

    Google Scholar 

  26. A. A. Valuev, A. S. Kaklyugin, and G. É. Norman, Matemat. Modelir. 4, No. 12. 178 (1992).

    Google Scholar 

  27. A. S. Kaklyugin, G. É. Norman, and A. A. Valuev, in Proceedings of the International Conference on Physics of Strongly Coupled Plasmas, ed. W. D. Kraeft and M. Schlanges (World Scientific, Singapore, 1996), p. 435.

    Google Scholar 

  28. W. Ebeling, A. Forster, V. E. Fortov, V. K. Gryaznov, and A. Ya. Polishchuk, Thermophysical Properties of Hot Dense Plasmas. Teubner-Texte zur physik, vol. 25, (Teubner, Stuttgart, 1992).

    Google Scholar 

  29. V. E. Fortov and I. T. Iakubov, Physics of Nonideal Plasma (Énergoatomizdat, Moscow, 1994; Hemisphere, New York, 1990).

    Google Scholar 

  30. G. Bekefi, Ed., Radiation Processes in Plasmas (Wiley, New York, 1966; Mir, Moscow, 1971).

    Google Scholar 

  31. M. A. Lieberman and A. Bers, Quarterly Prog. Rept. No. 77, Res. Lab. of Electronics, M. I. T. (1965), p. 141.

  32. S. I. Andreev and N. F. Ivasenko, Principles of Calculations for Pulsed Xenon Lamps (Izdvo. Tomsk Univ., Tomsk, 1982), p. 44.

    Google Scholar 

  33. I. T. Iakubov and A. G. Khrapak, in Transport and Optical Properties of Nonideal Plasma, Ed. G. A. Kobzev, I. T. Iakubov, and M. M. Popovich (Plenum Press, New York, 1995), p. 1.

    Google Scholar 

  34. J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, London, 1969; Mir, Moscow, 1966).

    Google Scholar 

  35. B. V. Zelener, G. É. Norman, and V. S. Filinov, Teplofiz. Vys. Temp. 12, 267 (1974).

    ADS  Google Scholar 

  36. A. A. Valuev and Yu. K. Kurilenkov, Teplofiz. Vys. Temp. 21, 591 (1983).

    Google Scholar 

  37. V. I. Tatarskii, Usp. Fiz. Nauk 151, 273 (1987) [Sov. Phys. Usp. 30, 134 (1987)].

    MathSciNet  Google Scholar 

  38. L. D. Landau and E. M. Lifshitz, Statistical Physics, part 1 (Nauka, Moscow, 1995; Pergamon Press, Oxford, 1980).

    Google Scholar 

  39. A. S. Kaklyugin, Dissertation for candidate of physicomathematical sciences, IVTAN, Moscow, 1987.

    Google Scholar 

  40. E. M. Lifshitz and L. P. Pitayevsky, Statistical Physics, part 2 (Nauka, Moscow, 1978; Pergamon, Oxford, 1980).

    Google Scholar 

  41. K. H. Finken and U. Ackerman, Physica B 113, 135 (1982).

    Google Scholar 

  42. M. Ketlitz and R. Radtke, in Physics of Nonideal Plasmas. Teubner Text zur physik, vol. 26. Ed. W. Ebeling, A. Forster, and R. Radtke (Teubner, Stuttgart, 1992), p. 233.

    Google Scholar 

  43. L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1962; Mir, Moscow, 1966).

    Google Scholar 

  44. B. I. Danilov, in M. A. Leontovich (Ed.), Plasma Physics and the Problem of Controllable Thermonuclear Reactions (Izdvo. Akad. Nauk SSSR, Moscow, 1958), p. 77.

    Google Scholar 

  45. A. A. Valuev, I. V. Morozov, and G. É. Norman, in Abstracts of Reports of the Twenty-Fourth Zvenigorod Conference on the Physics of Plasma and UTS, Zvenigorod, 1997 (RIIS FIAN, Moscow, 1997), p. 236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 113, 880–896 (March 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valuev, A.A., Kaklyugin, A.S. & Norman, G.É. Plasma waves in a nonideal plasma. J. Exp. Theor. Phys. 86, 480–488 (1998). https://doi.org/10.1134/1.558493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558493

Keywords

Navigation