Skip to main content
Log in

NMR in 55Mn2+ nuclei in the quasi-one-dimensional antiferromagnetic CsMnBr3

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 1998

Abstract

The NMR spectrum of the quasi-one-dimensional easy-plane antiferromagnetic CsMnBr3, which has trigonal spin lattice, is investigated in detail. The measurements were performed on a wide-band NMR decimeter microwave-band spectrometer over a wide range of magnetic fields at temperatures 1.3–4.2 K. All three branches of the NMR spectrum previously found by us [JETP Lett. 64, 225 (1996)] are severely distorted because of the dynamic interaction with the Goldstone mode in the antiferromagnetic resonance spectrum. The experimental results in fields up to 40 kOe are described satisfactorily by an equation obtained by Zaliznyak et al. [JETP Lett. 64, 473 (1996)]. Formulas are obtained in our work that agree very well with experiment at all fields up to the “collapse” field H c of all sublattices. The unbiased NMR frequency in CsMnBr3 is determined to be v n0=416 MHz (T=1.3 K) in zero external magnetic field, and in this way the reduction in the spontaneous moment due to the quasi-one-dimensional nature of the system of Mn2+ spins, which according to our data amounts to 28%, is determined more accurately. The field dependences of the directions of the magnetic sublattices with respect to the magnetic field are obtained from the NMR spectra, confirming the equations of Chubukov [J. Phys. Condens. Matter 21, 441 (1988)]. The results on the field dependence of the width and intensities of the NMR lines are discussed, along with three observed anomalies: 1) a strong increase in the NMR frequency for nuclei in sublattices that are perpendicular to the magnetic field; 2) the nonmonotonic temperature dependence of the resonance field for the lower branch of the spectrum; 3) the presence of two branches of the NMR spectrum in large H c fields, in which the CsMnBr3 must be a quasi-one-dimensional antiferromagnetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Eibischutz, R. C. Sherwood, F. S. L. Hsu, and D. E. Cox, AIP Conf. Proc. 17, 864 (1972).

    Google Scholar 

  2. B. D. Gaulin, T. E. Mason, M. F. Collins, and J. Z. Lavese, Phys. Rev. Lett. B62, 1380 (1989).

    ADS  Google Scholar 

  3. B. Ya. Kotyuzhaskii and D. V. Nikiforov, J. Phys.: Condens. Matter 3, 385 (1991).

    ADS  Google Scholar 

  4. S. I. Abarzhi, A. N. Bazhan, L. A. Prozorova, and I. A. Zaliznyak, J. Phys. Condens. Matter 4, 3307 (1992).

    Article  ADS  Google Scholar 

  5. A. V. Chubukov, J. Phys. Condens. Matter 21, 441 (1988).

    Google Scholar 

  6. N. A. Zaliznyak, L. A. Prozorova, and S. V. Petrov, Zh. Éksp. Teor. Fiz. 97, 359 (1990) [Sov. Phys. JETP 70, 203 (1990)].

    Google Scholar 

  7. A. S. Borovik-Romanov, S. V. Petrov, A. M. Tikhonov, and B. S. Dumesh, JETP Lett. 64, 225 (1996).

    Article  ADS  Google Scholar 

  8. E. A. Turov and M. P. Petrov, NMR in Ferro-and Antiferromagnetics [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  9. A. J. Heeger, A. M. Portis, D. T. Teaney, and G. Will, Phys. Rev. Lett. 7, 307 (1961).

    Article  ADS  Google Scholar 

  10. P. Pincus, P. G. de Gennes, F. Hartmann-Bourtron, and J. M. Winter, J. Appl. Phys. 34, 1036 (1963); P. G. de Gennes, P. Pincus, F. Hartmann-Bourtron, and J. M. Winter, Phys. Rev. 129, 1105 (1963).

    Article  Google Scholar 

  11. I. A. Zaliznyak, N. N. Zorin, and S. V. Petrov, JETP Lett. 64, 473 (1996).

    Article  ADS  Google Scholar 

  12. J. Goodyear and D. J. Kennedy, Acta Crystallogr., Sect. B: 28, 1640 (1974).

    Google Scholar 

  13. B. D. Gaulin, M. F. Collins, and W. J. L. Buyers, J. Appl. Phys. 61, 3409 (1987).

    ADS  Google Scholar 

  14. B. S. Dumesh, Prib. Tekh. Eksp. 1, 135 (1986).

    Google Scholar 

  15. W. N. Hardy and L. D. Whitehead, Rev. Sci. Instrum. 52, 213 (1981).

    ADS  Google Scholar 

  16. M. E. Zhitomirsky, O. A. Petrenko, and L. A. Prozorova, Phys. Rev. B 52, 3511 (1994).

    ADS  Google Scholar 

  17. A. F. Andreev and V. I. Marchenko, Usp. Fiz. Nauk 130 (1980) [Sov. Phys. Usp. 23, 21 (1980)].

  18. L. B. Welsh, Phys. Rev. 156, 370 (1967).

    Article  ADS  Google Scholar 

  19. G. M. Gurevich, B. S. Dumesh, S. V. Topalov, A. V. Andrienko, and A. Yu. Yakubovskii, Zh. Éksp. Teor. Fiz. 84, 832 (1983) [Sov. Phys. JETP 57, 483 (1983)].

    Google Scholar 

  20. G. L. McPherson, R. C. Koch, and G. D. Stucky, J. Chem. Phys. 60, 1424 (1974).

    Google Scholar 

  21. M. E. Zhitomirsky and I. A. Zaliznyak, Phys. Rev. B 53, 3428 (1996).

    ADS  Google Scholar 

  22. X. Xu, K. Okada, M. Fujii, N. Wada, M. Kurisu, and S. Kawano, J. Phys.: Condens. Matter 8, L371 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 113, 352–368 (January 1998)

Deceased.

An erratum to this article is available at http://dx.doi.org/10.1134/1.558514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovik-Romanov, A.S., Petrov, S.V., Tikhonov, A.M. et al. NMR in 55Mn2+ nuclei in the quasi-one-dimensional antiferromagnetic CsMnBr3 . J. Exp. Theor. Phys. 86, 197–205 (1998). https://doi.org/10.1134/1.558484

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558484

Keywords

Navigation