Skip to main content
Log in

Fluctuation background due to incompressible disturbances in laminar shear flows

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The incompressible fluctuation background in laminar shear flows with a smooth velocity profile is investigated. Concrete calculations are performed for parallel Couette flow using nonmodal analysis of the linear dynamics of the disturbances. Nonmodal analysis makes it possible to grasp phenomena that could not be grasped in the early investigations, and thereby makes it possible to represent the fluctuation background in a completely new light: In incompressible shear flows the spatial spectral energy density of the fluctuation background is anisotropic, and furthermore in certain regions of wave-number space it is higher than that of the thermal noise. It is also shown that in the stationary state of the nonequilibrium system studied there exists a new, indirect channel for thermalization of the energy of the mean flow—energy is constantly transferred from the mean flow into the spatial Fourier harmonics of vortex pertubations and ultimately into heat. Possible manifestations of the fluctuation background described in this paper are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Reddy, P. J. Schmid, and D. S. Henningson, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 53, 15 (1993).

    MathSciNet  Google Scholar 

  2. L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, Science 261, 578 (1993).

    ADS  MathSciNet  Google Scholar 

  3. L. H. Gustavsson, J. Fluid Mech. 224, 241 (1991).

    ADS  MATH  Google Scholar 

  4. S. C. Reddy and D. S. Henningson, J. Fluid Mech. 252, 209 (1993).

    ADS  MathSciNet  Google Scholar 

  5. Lord Kelvin (W. Thomson), Philos. Mag. 24(5), 188 (1887).

    Google Scholar 

  6. W. M. F. Orr, Proc. Roy. Irish Acad. A 27, 9 (1907).

    MATH  Google Scholar 

  7. A. D. D. Craik and W. O. Criminale, Proc. R. Soc. London, Ser. A 406, 13 (1986).

    ADS  MathSciNet  Google Scholar 

  8. K. Moffatt, in Atmospheric Turbulence and Radio Wave Propagation, A. M. Yaglom and V. I. Tatarskii (eds.), Nauka Press, Moscow (1967), p. 139.

    Google Scholar 

  9. S. Marcus and W. H. Press, J. Fluid Mech. 79, 525 (1977).

    ADS  Google Scholar 

  10. W. O. Criminale and P. G. Drazin, Stud. Appl. Math. 83, 123 (1990).

    MathSciNet  Google Scholar 

  11. Dzh. G. Lominadze, G. D. Chagelishvili, and R. G. Chanishvili, Pis’ma Astron. Zh. 1, 856 (1988) [Sov. Astron. Lett. 14, 364 (1988)].

    ADS  Google Scholar 

  12. B. F. Farrell and P. J. Ioannou, Phys. Fluids A 5, 1390 (1993).

    ADS  Google Scholar 

  13. G. D. Chagelishvili, R. G. Chanishvili, J. G. Lominadze, and I. N. Segal in Proc. of the 4th Inter. Conf. on Plasma Physics and Controlled Nuclear Fusion, Japan, November 17–20, 1992, ESA SP-351 (1993), p. 23.

  14. G. D. Chagelishvili, A. D. Rogova, and I. N. Segal, Phys. Rev. E 50, R4283 (1994).

  15. G. D. Chagelishvili, T. S. Christov, R. G. Chanishvili, and J. G. Lominadze, Phys. Rev. E 47, 366 (1993).

    Article  ADS  Google Scholar 

  16. S. A. Balbus and J. H. Hawley, Astrophys. J. 400, 610 (1992).

    Article  ADS  Google Scholar 

  17. S. H. Lubow and H. C. Spruit, Astrophys. J. 445, 337 (1995).

    Article  ADS  Google Scholar 

  18. G. D. Chagelishvili, R. G. Chanishvili, J. G. Lominadze, and A. G. Tevzadze, Phys. Plasmas 4, 259 (1997).

    ADS  MathSciNet  Google Scholar 

  19. G. D. Chagelishvili, R. G. Chanishvili, and J. G. Lominadze in High Energy Astrophysics: American and Soviet Perspectives, National Academy Press, Washington (1991).

    Google Scholar 

  20. T. Gebhardt and S. Grossmann, Phys. Rev. E 50, 3705 (1994).

    Article  ADS  Google Scholar 

  21. J. S. Baggett, T. A. Driscoll, and L. N. Trefethen, Phys. Fluids 7, 833 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  22. G. D. Chagelishvili, R. G. Chanishvili, T. S. Christov, J. G. Lominadze, and I. N. Segal, Preprint No. 126, Space Research Institute, Russian Academy of Sciences, Moscow (1995).

  23. G. D. Chagelishvili, A. D. Rogova, and D. G. Tsiklauri, Phys. Rev. E 53, 6028 (1996).

    Article  ADS  Google Scholar 

  24. G. D. Chagelishvili and O. G. Chkhetiani, JETP Lett. 62, 314 (1995).

    ADS  Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, New York (1980).

    Google Scholar 

  26. R. Schmitz, Phys. Rep. 171(1), 1 (1988).

    Article  ADS  Google Scholar 

  27. R. Graham in Fluctuations, Instabilities, and Phase Transitions, T. Riste (ed.), Plenum Press, New York (1975), p. 215; R. Graham and H. Pleiner, Phys. Fluids 18, 130 (1975).

    Google Scholar 

  28. Yu. L. Klimontovich, Statistical Physics, Harwood, Chur (1986).

    Google Scholar 

  29. Yu. L. Klimontovich, Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  30. J. Lutsko and J. W. Dufty, Phys. Rev. A 32, 3040 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 112, 1664–1674 (November 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chagelishvili, G.D., Khudzhadze, G.R. Fluctuation background due to incompressible disturbances in laminar shear flows. J. Exp. Theor. Phys. 85, 907–913 (1997). https://doi.org/10.1134/1.558428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558428

Keywords

Navigation