Skip to main content
Log in

Excitonic light-absorption and amplification bands in the presence of laser radiation

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We examine the absorption and amplification bands of a weak probe signal in the presence of Bose-Einstein condensation of excitons that emerges in nonequilibrium conditions in the field of coherent laser radiation with a wave vector k 0. We assume that the detuning \(\tilde \Delta \) from resonance between the energy ħω ex (k 0)+L 0 of the exciton level, which is shifted because of exciton-exciton interaction, and the laser photon energy ħω L , is generally nonzero. The elementary excitation spectrum consisting of the quasiexcitonic and quasienergy branches determines the optical properties of the system. When there is real induced Bose-Einstein condensation, at \(\tilde \Delta = 0\) the two branches touch, as they do in spontaneous Bose-Einstein condensation. In virtual induced Bose-Einstein condensation, when \(\tilde \Delta < 0\), instabilities emerge in the spectrum in certain regions of the k-space. These instabilities are caused by a real transformation of two laser photons into two extracondensate particles. Nonequilibrium extracondensate excitons strongly affect the absorption and amplification of the probe light signal. We show that light absorption is due to the quantum transition from the ground state of the crystal to the quasiexcitonic branch of the spectrum. On the other hand, amplification of the signal is caused by the transition from the quasienergy branch to the ground state of the crystal. The same transition can be explained by a real transformation of two laser photons into a vacuum photon of frequency ħcq and a crystal exciton with a wave vector 2k 0q. Finally, we show that the excitonic absorption and light-amplification bands are essentially anisotropic at \(\tilde \Delta \approx 0\) and depend on the orientation of the vectors q and k 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink and H. Morkoc, Phys. Rev. Lett. 56, 2748 (1986).

    Article  ADS  Google Scholar 

  2. A. Von Lehmen, D. S. Chemla, J. E. Zucher, and J. P. Heritage, Opt. Lett. 11, 609 (1986).

    ADS  Google Scholar 

  3. S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).

    ADS  Google Scholar 

  4. S. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev. B 37, 941 (1988).

    Article  ADS  Google Scholar 

  5. V. R. Mis’ko, S. A. Moskalenko, and M. I. Shmiglyuk, Fiz. Tverd. Tela (St. Petersburg) 35, 3213 (1993) [Phys. Solid State 36, 1580 (1993)].

    Google Scholar 

  6. S. A. Moskalenko and V. R. Mis’ko, Ukr. Fiz. Zh. 37, 1812 (1992).

    Google Scholar 

  7. L. V. Keldysh and A. N. Kozlov, Zh. Éksp. Teor. Fiz. 54, 978 (1968) [Sov. Phys. JETP 27, 521 (1968)].

    Google Scholar 

  8. S. A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 4, 276 (1962) [Sov. Phys. Solid State 4, 199 (1962)].

    Google Scholar 

  9. R. Zimmermann, Phys. Status Solidi B 76, 191 (1976).

    Google Scholar 

  10. V. F. Elesin and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 63, 1447 (1972) [Sov. Phys. JETP 35, 766 (1973)].

    Google Scholar 

  11. E. M. Lifshitz and Pitaevskii, Physical Kinetics, Pergamon Press, Oxford (1981), § 62–64.

    Google Scholar 

  12. L. V. Keldysh and S. G. Tikhodeev, Zh. Éksp. Teor. Fiz. 90, 1852 (1986) [Sov. Phys. JETP 63, 1086 (1986)].

    ADS  Google Scholar 

  13. L. V. Keldysh and S. G. Tikhodeev, Zh. Éksp. Teor. Fiz. 91, 78 (1986) [Sov. Phys. JETP 64, 45 (1986)].

    ADS  Google Scholar 

  14. V. P. Mis’ko, S. A. Moskalenko, A. Kh. Rotaru, and Yu. M. Shvera, Zh. Éksp. Teor. Fiz. 99, 1215 (1991) [Sov. Phys. JETP 72, 676 (1991)].

    Google Scholar 

  15. N. N. Bogolyubov, Collected Scientific Works [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  16. A. I. Bobrysheva, M. I. Shmiglyuk, and S. S. Russu, Proc. SPIE 1807, 79 (1993).

    ADS  Google Scholar 

  17. A. V. Lelyakov and S. A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 11, 3260 (1969) [Sov. Phys. Solid State 11, 2642 (1969)].

    Google Scholar 

  18. S. A. Moskalenko, Bose-Einstein Condensation of Excitons and Biexcitons [in Russian], RIO, Kishinev (1970).

    Google Scholar 

  19. A. I. Bobrysheva, S. A. Moskalenko, and Hoang Ngok Kam, Zh. Éksp. Teor. Fiz. 103, 301 (1993) [JETP 76, 163 (1993)].

    Google Scholar 

  20. M. Combescot, Phys. Rev. B 41, 3517 (1990).

    Article  ADS  Google Scholar 

  21. V. A. Zalozh, S. A. Moskalenko, and A. Kh. Rotaru, Zh. Éksp. Teor. Fiz. 95, 601 (1989) [Sov. Phys. JETP 68, 338 (1989)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 112, 167–179 (July 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskalenko, S.A., Pavlov, V.G. Excitonic light-absorption and amplification bands in the presence of laser radiation. J. Exp. Theor. Phys. 85, 89–96 (1997). https://doi.org/10.1134/1.558320

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558320

Keywords

Navigation