Skip to main content
Log in

Breakdown of the linear current regime in periodic structures

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the effect of a weak nonlinearity in media on the linear regime of current flow in two-dimensional periodic structures with two equal component concentrations. We find that the asymptotic behavior of the electric field and current as functions of the distance between the angles in heterogeneous media is determined by the parameter h=σ 2/σ 1 (here σ 1 and σ 2 are the linear conductivities of the cells) and the external magnetic field B. This dependence leads to divergence of the higher-order moments of field and current at certain critical values h c and B c and to divergence of the response functions related to the higher-order moments. For square cells the effective nonlinear conductivity diverges at hh c, with \(h_c = (\sqrt 2 - 1)^2 \). For structures of general shape we find the dependence of h c on the angles and the external magnetic field. We show that for a given structure the linear regime of current flow in the system can be reversibly transformed into a nonlinear one by varying the magnetic field strength. The critical field B c is approximately determined from the condition ω c τ∼1, where ω c and τ −1 are, respectively, the cyclotron frequency and the collision rate. Finally, we discuss the feasibility of detecting these effects experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the Third International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, Physica A 207, (1994).

  2. A. M. Dykhne, Zh. Éksp. Teor. Fiz. 59, 110 (1970) [Sov. Phys. JETP 32, 63 (1971)].

    Google Scholar 

  3. B. Ya. Balagurov, Zh. Éksp. Teor. Fiz. 79, 1561 (1980) [Sov. Phys. JETP 52, 787 (1980)].

    ADS  Google Scholar 

  4. Yu. P. Emets, Zh. Éksp. Teor. Fiz. 96, 701 (1989) [Sov. Phys. JETP 69, 397 (1989)].

    Google Scholar 

  5. B. Ya. Balagurov, Zh. Éksp. Teor. Fiz. 88, 1664 (1985) [Sov. Phys. JETP 61, 991 (1985)].

    Google Scholar 

  6. Y. Gefen, W.-H. Shih, R. B. Laibowitz, and J. M. Viggiano, Phys. Rev. Lett. 57, 3097 (1986).

    Article  ADS  Google Scholar 

  7. L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B 34, 4656 (1986).

    ADS  Google Scholar 

  8. M. A. Dubson, Y. C. Hui, M. B. Weissman, and J. C. Garland, Phys. Rev. B 39, 6807 (1989).

    Article  ADS  Google Scholar 

  9. A. Aharony, Phys. Rev. Lett. 58, 2726 (1987).

    ADS  Google Scholar 

  10. D. Stroud and P. M. Hui, Phys. Rev. B 37, 8719 (1988).

    Article  ADS  Google Scholar 

  11. R. Blumenfeld and D. J. Bergman, Phys. Rev. B 43, 13 682 (1991).

    Google Scholar 

  12. A. M. Satanin, S. V. Khor’kov, and A. Yu. Ugol’nikov, JETP Lett. 62, 322 (1995).

    ADS  Google Scholar 

  13. A. M. Satanin, Pis’ma Zh. Tekh. Fiz. 21, No. 8, 44 (1995) [Tech. Phys. Lett. 21, 652 (1995)].

    Google Scholar 

  14. A. M. Satanin, V. V. Skuzovatkin, and S. V. Khor’kov, JETP Lett. 64, 538 (1996).

    Article  ADS  Google Scholar 

  15. F. G. Bass and Yu. G. Gurevich, Hot Electrons and Strong Electromagnetic Waves in Semiconductor Plasma and Gas Discharge [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  16. I. E. Goldman and A. G. Zhdan, Fiz. Tekh. Poluprovodn. 10, 1839 (1976) [Sov. Phys. Semicond. 10, 1098 (1976)].

    Google Scholar 

  17. L. V. Gorozhda, Yu. P. Emets, N. I. Zhukov, and É. I. Zverovich, Zh. Tekh. Fiz. 49, 1577 (1979) [Sov. Phys. Tech. Phys. 24, 877 (1979)].

    Google Scholar 

  18. Yu. M. Vasetskii, L. V. Gorozhda, and Yu. P. Emets, Zh. Tekh. Fiz. 52, 601 (1982) [Sov. Phys. Tech. Phys. 27, 389 (1982)].

    Google Scholar 

  19. Yu. P. Emets, Electrical Characteristics of Composites with Regular Structure [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  20. A. M. Dykhne, Zh. Éksp. Teor. Fiz. 59, 641 (1970) [Sov. Phys. JETP 32, 348 (1971)].

    Google Scholar 

  21. B. Ya. Balagurov, Fiz. Tverd. Tela (Leningrad) 20, 3332 (1978) [Sov. Phys. Solid State 20, 1922 (1978)].

    Google Scholar 

  22. Yu. M. Vasetskii and Yu. P. Emets, Zh. Prikl. Mekh. Tekh. Fiz. 5, 117 (1979).

    Google Scholar 

  23. Yu. A. Dreizin and A. M. Dykhne, Zh. Éksp. Teor. Fiz. 84, 1756 (1983) [Sov. Phys. JETP 57, 1024 (1983)].

    Google Scholar 

  24. D. J. Bergman, Phys. Rev. B 39, 4598 (1989).

    ADS  Google Scholar 

  25. A. M. Dykhne, V. V. Zosimov, and S. A. Rybak, Dokl. Ross. Akad. Nauk 345, 467 (1995) [Phys. Dokl. 40, 613 (1995)].

    MathSciNet  Google Scholar 

  26. A. A. Snarskii, Pis’ma Zh. Tekh. Fiz. 21, No. 1, 3 (1995) [Tech. Phys. Lett. 21, 1 (1995)].

    Google Scholar 

  27. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 112, 643–660 (August 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satanin, A.M., Khor’kov, S.V. & Skuzovatkin, V.V. Breakdown of the linear current regime in periodic structures. J. Exp. Theor. Phys. 85, 351–359 (1997). https://doi.org/10.1134/1.558291

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558291

Keywords

Navigation