Skip to main content
Log in

Tunneling conductivity oscillations in a magnetic field in metal-insulator-narrow-gap-HgCdTe structures: The energy spectrum and spin-orbit splitting of 2D states

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study tunneling conductivity oscillations in a magnetic field in narrow-gap p-HgCdTe-oxide-metal (Yb, Al) structures. In tunnel structures with Yb we detect two types of tunneling conductivity oscillations. The first is related to the crossing of the Landau levels of two-dimensional (2D) states localized in the surface quantum well of the semiconductor, and has an energy E F+eV, where E F is the Fermi energy of the semiconductor and V is the bias voltage; the second has an energy E F. We find that in such structures with an asymmetric quantum well there is strong spin-orbit splitting in the spectrum of the 2D states. In p-HgCdTe-oxide-Al tunnel structures the surface potential is much weaker and only oscillations of the first type are observed. We find that in such structures there is only one spin state of the 2D carriers, while the second is pushed into the continuous spectrum because of strong spin-orbit coupling. To analyze the experimental results we calculate the spectrum of 2D states localized in the surface quantum well in a semiconductor with a Kane dispersion law. We find that all the experimental results are in good agreement with the results of calculations. Finally, we discuss the features of “kinematically coupled” states in an asymmetric quantum well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Tsui, Phys. Rev. B 8, 2657 (1973).

    Article  ADS  Google Scholar 

  2. G. M. Min’kov, O. É. Rut, V. A. Larionova, and A. V. Germanenko, Zh. Éksp. Teor. Fiz. 105, 719 (1994) [JETP 78, 384 (1994)].

    Google Scholar 

  3. R. C. Ashoori, J. A. Lebens, N. P. Bigelow, and R. H. Silsbee, Phys. Rev. B 48, 4616 (1993).

    Article  ADS  Google Scholar 

  4. K. M. Brown, N. Turner, J. T. Nicholls, E. H. Linfield, M. Pepper, D. A. Ritchie, and G. A. C. Jones, Phys. Rev. B 50, 15 465 (1994).

    Google Scholar 

  5. J. P. Eisenstein, L. N. Preiffer, and K. W. West, Surf. Sci. 305, 393 (1994).

    Article  Google Scholar 

  6. J. P. Eisenstein, L. N. Preiffer, and K. W. West, Phys. Rev. Lett. 69, 3804 (1992).

    Article  ADS  Google Scholar 

  7. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, A. L. Éfros and M. Pollak (eds), North-Holland, Amsterdam (1985), p. 1.

    Google Scholar 

  8. P. Sobkowicz, Semicond. Sci. Technol. 5, 183 (1990).

    Article  ADS  Google Scholar 

  9. Yu. L. Bychkov and É. I. Rashba, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  10. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    ADS  MATH  Google Scholar 

  11. R. Eppenga and M. F. H. Schuurmans, Phys. Rev. B 37, 10 923 (1988).

    Google Scholar 

  12. J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 38, 10 142 (1988).

    Google Scholar 

  13. B. Das, D. C. Miller, S. Datta, R. Reifenberger, W. P. Hong, P. K. Bhattacharya, J. Singh, and M. Jaffe, Phys. Rev. B 39, 1411 (1989).

    ADS  Google Scholar 

  14. H. L. Stoermer, T. Haavasoja, V. Narayanamurti et al., J. Vac. Sci. Technol. B 1, 423 (1984).

    Google Scholar 

  15. V. F. Radantsev, Zh. Éksp. Teor. Fiz. 96, 1793 (1989) [Sov. Phys. JETP 69, 1012 (1989)].

    Google Scholar 

  16. V. F. Radantsev, T. I. Deryabina, G. I. Kulaev, and E. L. Rumyantsev, Phys. Rev. B 53, 15 756 (1996).

    Google Scholar 

  17. G. M. Min’kov, A. V. Germanenko, V. V. Kruzhaev, O. É. Rut, and V. A. Larionova, JETP Lett. 62, 330 (1995).

    ADS  Google Scholar 

  18. D. C. Tsui, Phys. Rev. B 4, 4438 (1971).

    Article  ADS  Google Scholar 

  19. D. C. Tsui, Phys. Rev. B 8, 2657 (1973).

    Article  ADS  Google Scholar 

  20. J. Muller and U. Kunze, Semicond. Sci. Technol. 8, 705 (1993).

    ADS  Google Scholar 

  21. U. Kunze, Z. Phys. B 80, 47 (1990).

    Google Scholar 

  22. L. P. Zverev, V. V. Kruzhaev, and G. M. Min’kov, Zh. Éksp. Teor. Fiz. 80, 1163 (1981) [Sov. Phys. JETP 53, 595 (1981)].

    Google Scholar 

  23. L. P. Zverev, V. V. Kruzhaev, and G. M. Min’kov, Fiz. Tverd. Tela (Leningrad) 26, 2943 (1984) [Sov. Phys. Solid State 26, 1778 (1984)].

    Google Scholar 

  24. I. M. Tsidil’kovskii, G. I. Harus, and N. S. Shelushinina, Adv. Phys. 34, 43 (1985).

    ADS  Google Scholar 

  25. G. M. Minkov, A. V. Germanenko, V. A. Larionova, and O. E. Rut, Phys. Rev. B 54, 1841 (1996).

    Article  ADS  Google Scholar 

  26. A. V. Germanenko, G. M. Minkov, V. A. Larionova, O. E. Rut, C. R. Becker, and G. Landwehr, Phys. Rev. B 52, 17 254 (1995).

    Google Scholar 

  27. R. Wollrab, R. Sizman, F. Koch et al., Semicond. Sci. Technol. 4, 491 (1989).

    Article  ADS  Google Scholar 

  28. R. E. Doezema and H. D. Drew, Phys. Rev. Lett. 57, 762 (1986).

    Article  ADS  Google Scholar 

  29. An-zhen Zhang, J. Slinkman, and R. E. Doezema, Phys. Rev. B 244, 10 752 (1991).

  30. G. M. Minkov, A. V. Germanenko, V. A. Larionova, and O. E. Rut, Semicond. Sci. Technol. 10, 1578 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 112, 537–550 (August 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min’kov, G.M., Rut, O.É. & Germanenko, A.V. Tunneling conductivity oscillations in a magnetic field in metal-insulator-narrow-gap-HgCdTe structures: The energy spectrum and spin-orbit splitting of 2D states. J. Exp. Theor. Phys. 85, 292–299 (1997). https://doi.org/10.1134/1.558277

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558277

Keywords

Navigation