Skip to main content
Log in

The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by “hot” electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Phys. Rev. Lett. 58, 1212 (1987).

    Article  ADS  Google Scholar 

  2. R. W. Schoenlien, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Phys. Rev. Lett. 58, 1680 (1987).

    ADS  Google Scholar 

  3. S. D. Brorson, A. Kazeroonian, J. S. Modera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990).

    Article  ADS  Google Scholar 

  4. M. I. Kaganov, I. M. Lifshits, and L. V. Tanatarov, Zh. Éksp. Teor. Fiz. 31, 232 (1956) [Sov. Phys. JETP 4, 173 (1957)].

    Google Scholar 

  5. V. A. Shklovskii, Pis’ma Zh. Éksp. Teor. Fiz. 26, 679 (1977); Zh. Éksp. Teor. Fiz. 78, 1281 (1980) [Sov. Phys. JETP 51, 646 (1980)].

    Google Scholar 

  6. V. A. Shklovskij, J. Low Temp. Phys. 41, 375 (1980).

    Article  Google Scholar 

  7. K. V. Maslov and V. A. Shklovskii, Zh. Éksp. Teor. Fiz. 71, 1514 (1976) [Sov. Phys. JETP 44, 792 (1976)]; Zh. Éksp. Teor. Fiz. 78, 3 (1980) [Sov. Phys. JETP 51, 1 (1980)].

    Google Scholar 

  8. M. I. Kaganov and V. G. Peschanskii, Zh. Éksp. Teor. Fiz. 33, 1261 (1957) [Sov. Phys. JETP 6, 970 (1958)].

    Google Scholar 

  9. G. Bergmann, W. Wei, Y. Zou, and R. M. Mueller, Phys. Rev. B 41, 7386 (1990).

    Article  ADS  Google Scholar 

  10. E. M. Gershenzon, M. E. Gershenzon, G. N. Gol’tsman, A. M. Lyul’kin, A. D. Semenov, and A. V. Sergeev, Zh. Éksp. Teor. Fiz. 97, 901 (1990) [Sov. Phys. JETP 70, 505 (1990)].

    Google Scholar 

  11. A. W. Little, Can. J. Phys. 37, 334 (1959).

    ADS  Google Scholar 

  12. P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).

    Article  ADS  Google Scholar 

  13. N. Perrin and H. Budd, Phys. Rev. Lett. 28, 1701 (1972).

    ADS  Google Scholar 

  14. D. Belitz, Phys. Rev. B 36, 2513 (1987).

    ADS  Google Scholar 

  15. D. Pines, Elementary Excitations in Solids, W. A. Benjamin, New York (1963).

    Google Scholar 

  16. E. M. Gershenzon, G. N. Gol’tsman, A. I. Elant’ev, B. S. Karasik, and S. E. Potoskuev, Fiz. Nizk. Temp. 14, 753 (1988) [Sov. J. Low Temp. Phys. 14, 414 (1988)].

    ADS  Google Scholar 

  17. G. Bergmann, Phys. Rep. 27, 159 (1976).

    Article  ADS  Google Scholar 

  18. J. J. Lin and C. E. Wu, Europhys. Lett. 29, 141 (1995).

    Google Scholar 

  19. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, Phys. Rev. B 46, 13592 (1992).

    Google Scholar 

  20. C.-K. Sun, F. Vallee, L. Acioli, E. P. Ippen, and J. G. Fujimoto, Phys. Rev. B 48, 12365 (1993).

    Google Scholar 

  21. S. B. Kaplan, J. Low Temp. Phys. 37, 343 (1979).

    Article  Google Scholar 

  22. A. I. Bezuglyj and V. A. Shklovskij, Physica C 202, 234 (1992).

    Article  ADS  Google Scholar 

  23. G. Bergmann, Solid State Commun. 46, 347 (1983).

    Article  ADS  Google Scholar 

  24. G. Bergmann, Phys. Rep. 107, 1 (1984).

    Article  ADS  Google Scholar 

  25. S. J. Dorozhkin, F. Lell, and W. Shoepe, Solid State Commun. 60, 245 (1986).

    Article  Google Scholar 

  26. E. M. Gershenzon, M. E. Gershenzon, G. N. Gol’tsman et al., Zh. Éksp. Teor. Fiz. 86, 758 (1984) [Sov. Phys. JETP 59, 442 (1984)].

    Google Scholar 

  27. A. L. Shi, G. L. Huang, C. Lehane, D. Kim, H. S. Kwok, J. Swiatkiewicz, G. C. Xu, and P. N. Prasad, Phys. Rev. B 48, 6550 (1993).

    ADS  Google Scholar 

  28. N. Bluzer, Phys. Rev. B 44, 10222 (1991).

    Google Scholar 

  29. N. Bluzer, J. Appl. Phys. 71, 1336 (1992).

    Article  ADS  Google Scholar 

  30. N. Bluzer, Phys. Rev. B 46, 1033 (1992).

    Article  ADS  Google Scholar 

  31. A. V. Sergeev, A. D. Semyonov, P. Kouminov, V. Trifonov, I. G. Goghidze, B. S. Karasik, G. N. Gol’tsman, and E. M. Gershenzon, Phys. Rev. B 49, 9091 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 2106–2133 (June 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezuglyi, A.I., Shklovskii, V.A. The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons. J. Exp. Theor. Phys. 84, 1149–1163 (1997). https://doi.org/10.1134/1.558253

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558253

Keywords

Navigation