Skip to main content
Log in

Atomic structures of gallium-rich GaAs(001)-4×2 and GaAs(001)-4×6 surfaces

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy is applied for the first time to an atomic-resolution investigation of the 4×2 and 4×6 phases on a gallium-rich GaAs(001) surface obtained by molecular-beam epitaxy and migration-enhanced epitaxy. A unified structural model is proposed with consideration of the results of experiments and first-principles calculations of the total energy. In this model the 4×2 phase consists of two Ga dimers in the top layer and a Ga dimer in the third layer, and the 4×6 phase is matched to periodically arranged Ga clusters at the corners of a 4×6 unit cell on top of the 4×2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Madhukar and S. V. Ghaisas, CRC Crit. Rev. Solid State Mater. Sci. 14, 1 (1988).

    Google Scholar 

  2. M. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamental and Current Status, Springer-Verlag, New York-Berlin-Heidelberg (1996).

    Google Scholar 

  3. Molecular Beam Epitaxy, A. Cho (ed.), AIP Press, New York (1994).

    Google Scholar 

  4. H. H. Farrell, J. P. Harbison, and L. D. Peterson, J. Vac. Sci. Technol. B 5, 1482 (1987); D. J. Frankel, C. Yu, J. P. Harbison, and H. H. Farrell, J. Vac. Sci. Technol. B 5, 1113 (1987).

    Article  ADS  Google Scholar 

  5. J. H. Neave and B. A. Joyce, J. Cryst. Growth 44, 387 (1978).

    Article  Google Scholar 

  6. A. Y. Cho, J. Appl. Phys. 42, 2074 (1971).

    Google Scholar 

  7. P. K. Larsen and D. J. Chadi, Phys. Rev. B 37, 8282 (1988).

    Article  ADS  Google Scholar 

  8. M. D. Pashley, K. W. Haberern, W. Friday et al., Phys. Rev. Lett. 60, 2176 (1988); M. D. Pashley and K. W. Haberern, Phys. Rev. Lett. 67, 2697 (1991).

    Article  ADS  Google Scholar 

  9. A. J. van Rommel, J. E. Chrombeen, and T. G. van Dirschot, Surf. Sci. 72, 95 (1978).

    Google Scholar 

  10. W. Ranke and K. Jacobi, Prog. Surf. Sci. 10, 1 (1981).

    Article  Google Scholar 

  11. P. Drathen, W. Ranke, and K. Jacobi, Surf. Sci. 77, L162 (1978).

    Article  ADS  Google Scholar 

  12. J. R. Creighton, Surf. Sci. 234, 287 (1990).

    Article  Google Scholar 

  13. H. Qi, P. E. Gee, and R. F. Hicks, Phys. Rev. Lett. 72, 250 (1994).

    Article  ADS  Google Scholar 

  14. C. Deparis and J. Massies, J. Cryst. Growth, 108, 157 (1991).

    Article  Google Scholar 

  15. I. Kamiya, D. E. Aspnes, H. Tanaka et al., Phys. Rev. Lett. 68, 627 (1992); I. Kamiya, D. E. Aspnes, L. T. Florez, and J. P. Harbison, Phys. Rev. B 46, 15 894 (1992).

    Article  ADS  Google Scholar 

  16. D. K. Biegelsen, R. D. Bringans, J. E. Northrup, and L.-E. Swartz, Phys. Rev. B 41, 5701 (1990).

    Article  ADS  Google Scholar 

  17. J. E. Northrup and S. Froyen, Phys. Rev. Lett. 71, 2276 (1993); Phys. Rev. B 50, 2015 (1994).

    Article  ADS  Google Scholar 

  18. J. Falta, R. M. Tromp, M. Copel et al., Phys. Rev. Lett. 69, 3068 (1992).

    Article  ADS  Google Scholar 

  19. S. L. Skala, J. S. Hubacek, J. R. Tucker et al., Phys. Rev. B 48, 9138 (1993).

    Article  ADS  Google Scholar 

  20. Y. Horikoshi, M. Kawashima, and H. Yamaguchi, Jpn. J. Appl. Phys. 25, L868 (1986).

    Article  Google Scholar 

  21. Q. K. Xue, T. Hashizume, J. M. Zhou et al., Appl. Surf. Sci. 87/88, 364 (1995).

    Article  Google Scholar 

  22. J. M. Zhou, Q. K. Xue, H. Chaya et al., Appl. Phys. Lett. 64, 583 (1994).

    Article  ADS  Google Scholar 

  23. Q. K. Xue, J. M. Zhou, T. Hashimme, and T. Sakurai, J. Appl. Phys. 75, 5021 (1994).

    ADS  Google Scholar 

  24. T. Hashizume, Q. K. Xue, J. M. Zhou et al., Phys. Rev. Lett. 73, 2208 (1994); Phys. Rev. B 51, 4200 (1995).

    Article  ADS  Google Scholar 

  25. T. Ohno, Phys. Rev. Lett. 70, 631 (1993).

    ADS  Google Scholar 

  26. T. Sakurai, T. Hashimme, I. Kamiya et al., Prog. Surf. Sci. 33, 3 (1990); T. Hashizume, I. Sumita, Y. Murata et al., J. Vac. Sci. Technol. A 9, 742 (1991).

    Article  Google Scholar 

  27. S. Miwa, Y. Haga, E. Morita et al., Jpn. J. Appl. Phys. 32, 1508 (1993).

    Article  Google Scholar 

  28. R. Z. Bakhtizin, C. Park, T. Hashizume, and T. Sakurai, Zh. Éksp. Teor. Fiz. 108, 977 (1995) [J. Exp. Theor. Phys. 81, 538 (1995)].

    Google Scholar 

  29. E. J. Heller, Z. Y. Zhang, and M. G. Lagally, Phys. Rev. Lett. 71, 743 (1993); E. J. Heller and M. G. Lagally, Appl. Phys. Lett. 60, 2675 (1992).

    Article  ADS  Google Scholar 

  30. T. Ohno, Phys. Rev. Lett. 73, 460 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1858–1868 (May 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtizin, R.Z., Xue, Q., Sakurai, T. et al. Atomic structures of gallium-rich GaAs(001)-4×2 and GaAs(001)-4×6 surfaces. J. Exp. Theor. Phys. 84, 1016–1021 (1997). https://doi.org/10.1134/1.558238

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558238

Keywords

Navigation