Skip to main content
Log in

Cutoff of long-wave phonons in a nanocrystal due to a nonuniform strain field

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper considers the effect of extended monopole and dipole strain fields on the low-frequency boundary of the phonon spectrum in a crystal of finite dimensions. The boundary shift depends on the dynamical volume of the nonuniform strain region, which is determined by the parameters of the crystal and the sources of stress. An increase in the volume of the deformed region leads to a decrease in the undistorted part of the crystal, where a phonon with the largest wavelength can be produced. A monopole strain field is more efficient in cutting off long-wave phonons than a dipole strain field, and can “soften” the phonon spectrum. If a source generates stresses of the order of those on an interatomic scale, these effects can be the strongest and most diverse in crystals or phase precipitates with dimensions of less than 10−26 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. B. Brandt and S. M. Chudinov, Electronic Structure of Metals [in Russian], Moscow State University, Moscow (1973).

    Google Scholar 

  2. G. Leibfried and N. Brauer, Point Defects in Metals, Springer-Verlag, Heidelberg (1978).

    Google Scholar 

  3. A. M. Stoneham, Theory of Defects in Solids, Clarendon Press, Oxford (U.K.) (1975).

    Google Scholar 

  4. V. M. Svistunov, M. A. Belogolovskii, and A. N. D’yachenko, Usp. Fiz. Nauk 154, 153 (1988) [Sov. Phys. Usp. 31, 86 (1988)].

    Google Scholar 

  5. O. V. Klyavin, Physics of Crystal Plasticity at Helium Temperatures [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  6. V. S. Boiko, R. I. Garber, and A. M. Kosevich, Reversable Plasticity of Materials [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, New York (1986).

    Google Scholar 

  8. H. Haken, Quantenfeldtheorie des Festkorpers [in German], B. G. Teubner, Stuttgart (1973).

    Google Scholar 

  9. V. V. Meshcheryakov, Fiz. Tverd. Tela (St. Petersburg) 37, 43 (1995) [Phys. Solid State 37, 20 (1995)].

    Google Scholar 

  10. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to Theory of Disordered Systems [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  11. I. M. Lifshits, Zh. Éksp. Teor. Fiz. 17, 1076 (1947).

    Google Scholar 

  12. I. Ya. Polishchuk, A. P. Zhernov, and L. A. Maksimov, Zh. Éksp. Teor. Fiz. 94, 259 (1988).

    Google Scholar 

  13. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  ADS  Google Scholar 

  14. A. M. Bratkovskii, I. E. Zein, Fiz. Tverd. Tela (Leningrad) 26, 2561 (1984) [Sov. Phys. Solid State 26, 1553 (1984)].

    Google Scholar 

  15. G. Jacucei and R. Taylor, J. Phys. F 9, 1487 (1979).

    ADS  Google Scholar 

  16. J. Dundurs, L. D. Marks, and P. M. Ajayan, Phil. Mag. A 57, 605 (1988).

    Google Scholar 

  17. S. M. Komarov, JETP Lett. 58, 553 (1993).

    ADS  Google Scholar 

  18. J.-O. Bovin, R. Wallenberg, and D. J. Smith, Nature 317, 47 (1985).

    Article  ADS  Google Scholar 

  19. S. Iijima and T. Ichihashi, Phys. Rev. Lett. 56, 616 (1986).

    Article  ADS  Google Scholar 

  20. L. D. Marks, P. M. Ajayan, and J. Dundurs, Ultramicroscopy 20, 78 (1986).

    Article  Google Scholar 

  21. D. M. Farkas, T. Yamashita, and J. Perkins, Acta Met. Mat. 38, 1883 (1990).

    Google Scholar 

  22. A. Brause and R. Cowly, Structural Phase Transitions, Taylor and Francis, London (1981).

    Google Scholar 

  23. Yu. K. Favstov, Yu. N. Shul’ga, and A. G. Rakhshtadt, Material Properties of Highly Damping Alloys [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  24. É. L. Nagaev, Usp. Fiz. Nauk 162, 49 (1992) [Sov. Phys. Usp. 35, 747 (1992)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1845–1857 (May 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshcheryakov, V.V. Cutoff of long-wave phonons in a nanocrystal due to a nonuniform strain field. J. Exp. Theor. Phys. 84, 1010–1015 (1997). https://doi.org/10.1134/1.558237

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558237

Keywords

Navigation