Journal of Experimental and Theoretical Physics

, Volume 84, Issue 1, pp 190–196 | Cite as

Instability of single-electron memory at low temperatures in Al/AlOx/Al structures

  • V. A. Krupenin
  • S. V. Lotkhov
  • D. E. Presnov


A nanostructure based on a uniform one-dimensional array of ultrasmall tunnel junctions (a single-electron trap) characterized by an ability to maintain an excess charge of several electrons in an island is fabricated and investigated. Changes in the state of the trap are detected by a single-electron transistor. At the working temperature T=35 mK the storage time of a charge state is more than 8 h (which is the duration of the experiment). It is demonstrated that the possible factors limiting the lifetime of a state at temperatures below the typical temperatures for thermal activation include the influence of the random distribution and drift of the effective background charges of the metal islands, as well as the reverse influence discovered here of the transistor on the trap. As the current passing through the transistor increases, the hysteresis loop in the dependence of the charge in the trap on the control voltage narrows. It is noted that an increase in the current from 5 to 300 nA is equivalent to raising the working temperature to 250 mK.


Field Theory Elementary Particle Quantum Field Theory Hysteresis Loop Charge State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb (eds.), Elsevier, Amsterdam (1991), p. 173.Google Scholar
  2. 2.
    A. N. Korotkov, submitted to Molecular Electronics, J. Jortner and M. A. Ratner (eds.), Blackwell, Oxford.Google Scholar
  3. 3.
    K. Nakazato, R. J. Blaikie, and H. Ahmed, J. Appl. Phys. 75, 5123 (1994).CrossRefADSGoogle Scholar
  4. 4.
    J. E. Lukens, P. D. Dresselhaus, Siyuan Han, L. Ji, K. K. Likharev, and W. Zheng, Physica B (Amsterdam) 203, 354 (1994).ADSGoogle Scholar
  5. 5.
    D. V. Averin and A. A. Odintsov, Phys. Lett. A 140, 251 (1989).CrossRefADSGoogle Scholar
  6. 6.
    J. M. Martinis and M. Nahum, Phys. Rev. B 48, 18 316 (1993).Google Scholar
  7. 7.
    N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev, and S. I. Serdyukova, Zh. Éksp. Teor. Fiz. 95, 1010 (1989) [Sov. Phys. JETP 68, 581 (1989)].ADSGoogle Scholar
  8. 8.
    T. A. Fulton and G. C. Dolan, Phys. Rev. Lett. 59, 109 (1987).CrossRefADSGoogle Scholar
  9. 9.
    V. A. Krupenin, S. V. Lotkhov, and D. E. Presnov, in Nanostructures: Physics and Technology. Abstracts of Invited Lectures and Contributed Papers. 26–30 June 1995, St. Petersburg, Russia (1995), p. 354.Google Scholar
  10. 10.
    A. B. Zorin, Rev. Sci. Instrum. 66, 4296 (1995).CrossRefADSGoogle Scholar
  11. 11.
    F. C. Wellstood, C. Urbina, and J. Clarke, Phys. Rev. B 49, 5942 (1994).CrossRefADSGoogle Scholar
  12. 12.
    A. B. Zorin, F. J. Ahlers, J. Niemeyer et al., Phys. Rev. B 53, 13682 (1996).Google Scholar
  13. 13.
    D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett 65, 2446 (1990).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • V. A. Krupenin
    • 1
  • S. V. Lotkhov
    • 1
  • D. E. Presnov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations