Skip to main content
Log in

CaCuMn6O12 vs. CaCu2Mn5O12: A comparative study

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The ferrimagnetic compounds Ca(CuxMn3−x )Mn4O12 of the double distorted perovskites AC3B4O12 family exhibit a rapid increase of the ferromagnetic component in magnetization at partial substitution of square coordinated (Mn3+)C for (Cu2+)C. In the transport properties, this is seen as a change of the semiconducting type of resistivity for the metallic one. The evolution of magnetic properties of Ca(CuxMn3−x )Mn4O12 is driven by strong antiferromagnetic exchange interaction of (Cu2+)C with (Mn3+/Mn4+)B coordinated octahedra. The competing interactions of (Mn3+)C with (Mn3+/Mn4+)B lead to the formation of noncollinear magnetic structures that can be aligned by magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fichtl, V. Tsurkan, P. Lunkenheimer, et al., Phys. Rev. Lett. 94, 027601 (2005).

    Google Scholar 

  2. M. Venkatesan, P. Velasco, J. A. Alonso, et al., J. Phys.: Condens. Matter 16, 3465 (2004).

    Article  ADS  Google Scholar 

  3. B. Bochu, J. L. Buevoz, J. Chenavas, et al., Solid State Commun. 36, 133 (1980).

    Article  Google Scholar 

  4. I. O. Troyanchuk, L. S. Lobanovsky, N. V. Kasper, et al., Phys. Rev. B 58, 14903 (1998).

    Google Scholar 

  5. Z. Zeng, M. Greenblatt, J. E. Sustrom IV, et al., J. Solid State Chem. 147, 185 (1999).

    Article  ADS  Google Scholar 

  6. Z. Zeng, M. Greenblatt, M. A. Subramanian, and M. Croft, Phys. Rev. Lett. 82, 3164 (1999).

    ADS  Google Scholar 

  7. R. Przenioslo, I. Sosnowska, E. Suard, et al., J. Phys.: Condens. Matter 14, 5747 (2002).

    ADS  Google Scholar 

  8. R. Przenioslo, I. Sosnowska, E. Suard, et al., Physica B (Amsterdam) 344, 358 (2004).

    ADS  Google Scholar 

  9. R. Przenioslo, M. Regulski, I. Sosnowska, and E. Schneider, J. Phys.: Condens. Matter 14, 1061 (2002).

    ADS  Google Scholar 

  10. R. Weht and W. E. Pickett, Phys. Rev. B 65, 014415 (2001).

    Google Scholar 

  11. J. Sanchez-Benitez, J. A. Alonso, M. J. Martinez-Lope, et al., Chem. Mater. 15, 2193 (2003).

    Article  Google Scholar 

  12. J. Sanchez-Benitez, J. A. Alonso, A. de Anders, et al., J. Magn. Magn. Mater. 272–276, 1407 (2004).

    Google Scholar 

  13. A. N. Vasil’ev, O. S. Volkova, and E. A. Goodilin, JETP 101, 367 (2005).

    Google Scholar 

  14. O. Volkova, Yu. Arango, N. Tristan, et al., JETP Lett. 82, 444 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 82, No. 10, 2005, pp. 724–727.

Original English Text Copyright © 2005 by Volkova, Goodilin, Vasiliev, Khomskii, Tristan, Kerschl, Skourski, Mueller, Buechner.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkova, O., Goodilin, E., Vasiliev, A. et al. CaCuMn6O12 vs. CaCu2Mn5O12: A comparative study. Jetp Lett. 82, 642–645 (2005). https://doi.org/10.1134/1.2166912

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2166912

PACS numbers

Navigation