Skip to main content
Log in

Ground state of finite arrays of magnetic dots in the presence of an external magnetic field

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The ground state of an array of magnetic particles (magnetic dots), which are ordered in a square 2D lattice and whose magnetic moment is perpendicular to the lattice plane, in the presence of an external magnetic field has been analyzed. Such a model is applicable for sufficiently small dots with perpendicular anisotropy that are in a single-domain state and for dots in a strongly inhomogeneous vortex state whose magnetic moment is determined by the vortex core. For the magnetic field perpendicular to the system plane, the entire set of the states has been analyzed from the chessboard antiferromagnetic order of magnetic moments in low fields to the saturated state of the system with the parallel orientations of the magnetic moments of all dots in strong fields. In the presence of the border, the destruction of the chessboard order first occurs at the edges of the system, then near the extended sections of the surface, and finally expands over the entire interior of the array. The critical field at which this simplest state is destroyed is much more weakly than the value characteristic of the ideal infinite system. In contrast to this scenario, the destruction of the saturated state with decreasing field always begins far from the borders. Despite such different behaviors, the magnetic structure in the intermediate range of fields that is obtained with both increasing and decreasing field for finite arrays strongly differs from that characteristic of the ideal infinite system. The role of simple stacking faults of the magnetic dot lattice (such as single vacancies or their clusters) in the remagnetization of the system has been analyzed. The presence of such faults is shown to give rise to the appearance of local destructions of the chessboard antiferromagnetic order at fields that are much weaker than those for an ideal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    Article  ADS  Google Scholar 

  2. M. Kläui, C. A. F. Vaz, L. Lopez-Diaz, and J. A. C. Bland, J. Phys.: Condens. Matter 15, R985 (2003).

    ADS  Google Scholar 

  3. S. O. Demokritov, B. Hillebrands, and A. N. Slavin, Phys. Rep. 348, 441 (2001).

    Article  ADS  Google Scholar 

  4. R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000).

    Article  ADS  Google Scholar 

  5. M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  6. C. A. Ross, M. Hwang, M. Shima, et al., Phys. Rev. B 65, 144417 (2002).

  7. P. D. Ye, D. Weiss, K. von Klitzing, et al., Appl. Phys. Lett. 67, 1441 (1995).

    ADS  Google Scholar 

  8. J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).

    Article  ADS  Google Scholar 

  9. P. I. Beloborodov, R. S. Gekht, and V. A. Ignatchenko, Zh. Éksp. Teor. Fiz. 84, 1097 (1983) [Sov. Phys. JETP 57, 636 (1983)].

    Google Scholar 

  10. J. G. Brankov and D. M. Danchev, Physica A (Amsterdam) 144, 128 (1987); S. Prakash and C. L. Henley, Phys. Rev. B 42, 6574 (1990).

    ADS  Google Scholar 

  11. K. Yu. Guslienko, Appl. Phys. Lett. 75, 394 (1999).

    Article  ADS  Google Scholar 

  12. K. Yu. Guslienko, S. Choe, and S. Shin, Appl. Phys. Lett. 76, 3609 (2000).

    Article  ADS  Google Scholar 

  13. S. V. Maleev, Zh. Éksp. Teor. Fiz. 70, 2374 (1976) [Sov. Phys. JETP 43, 1240 (1976)].

    Google Scholar 

  14. J. E. L. Bishop, A. Yu. Galkin, and B. A. Ivanov, Phys. Rev. B 65, 174403 (2002).

    Google Scholar 

  15. M. Seul and R. Wolfe, Phys. Rev. Lett. 68, 2460 (1992).

    Article  ADS  Google Scholar 

  16. I. Booth, A. B. MacIsaac, J. P. Whitehead, and K. De’Bell, Phys. Rev. Lett. 75, 950 (1995).

    Article  ADS  Google Scholar 

  17. Ar. Abanov, V. Kalatsky, V. L. Pokrovsky, and W. M. Saslow, Phys. Rev. B 51, 1023 (1995).

    Article  ADS  Google Scholar 

  18. A. B. MacIsaac, J. P. Whitehead, M. C. Robinson, and K. De’Bell, Phys. Rev. B 51, 16033 (1995).

    Google Scholar 

  19. J. Arlett, J. P. Whitehead, A. B. MacIsaac, and K. De’Bell, Phys. Rev. B 54, 3394 (1996).

    Article  ADS  Google Scholar 

  20. E. Y. Vedmedenko, A. Ghazali, and J.-C. S. Lévy, Surf. Sci. 402–404, 391 (1998).

    Google Scholar 

  21. E. Y. Vedmedenko, H. P. Oepen, A. Ghazali, et al., Phys. Rev. Lett. 84, 5884 (2000).

    Article  ADS  Google Scholar 

  22. E. Y. Vedmedenko, A. Ghazali, and J.-C. S. Lévy, Phys. Rev. B 59, 3329 (1999).

    Article  ADS  Google Scholar 

  23. W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001).

    Google Scholar 

  24. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientational Transitions in Rare-Earth Magnets (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  25. V. G. Bar’yakhtar and B. A. Ivanov, in Soviet Science Reviews, Section A: Physics Reviews, Ed. by I. M. Khalatnikov (Harwood Academic, Amsterdam, 1985), Vol. 6, p. 404.

    Google Scholar 

  26. D. L. Mills, Phys. Rev. Lett. 20, 18 (1968).

    Article  ADS  Google Scholar 

  27. F. Keffer and H. Chow, Phys. Rev. Lett. 31, 1061 (1973).

    Article  ADS  Google Scholar 

  28. W. E. Tennant, R. B. Bailey, and P. L. Richards, in Proceedings of the Conference on Magnetism and Magnetic Materials, San Francisco, 1974, Ed. by C. D. Graham, G. H. Lander, and J. J. Rhyne (American Inst. of Physics, New York, 1975), AIP Conf. Proc., No. 24.

    Google Scholar 

  29. R. W. Wang, D. L. Mills, E. E. Fullerton, et al., Phys. Rev. Lett. 72, 920 (1994).

    ADS  Google Scholar 

  30. R. W. Wang, D. L. Mills, E. E. Fullerton, et al., Phys. Rev. B 53, 2627 (1996).

    ADS  Google Scholar 

  31. S. Rakhmanova, D. L. Mills, and E. E. Fullerton, Phys. Rev. B 57, 476 (1998).

    Article  ADS  Google Scholar 

  32. N. A. Usov and S. E. Peschany, J. Magn. Magn. Mater. 118, L290 (1993).

    Article  ADS  Google Scholar 

  33. T. Shinjo, T. Okuno, R. Hassdorf, et al., Science 289(5481), 930 (2000); R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, et al., Phys. Rev. Lett. 83, 1042 (1999); K. Runge, T. Nozaki, U. Okami, et al., J. Appl. Phys. 79, 5075 (1996); A. Fernandez and C. J. Cerjan, J. Appl. Phys. 87, 1395 (2000); T. Pokhil, D. Song, and J. Nowak, J. Appl. Phys. 87, 6319 (2000).

    Article  ADS  Google Scholar 

  34. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967; North-Holland, Amsterdam, 1968).

    Google Scholar 

  35. B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M. Wysin, Phys. Rev. B 58, 8464 (1998).

    ADS  Google Scholar 

  36. B. A. Ivanov, C. E. Zaspel, and A. Yu. Merkulov, J. Appl. Phys. 89, 7198 (2001); Phys. Rev. B 68, 212403 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 128, No. 6, 2005, pp. 1260–1278.

Original Russian Text Copyright © 2005 by Galkin, Ivanov, Merkulov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galkin, A.Y., Ivanov, B.A. & Merkulov, A.Y. Ground state of finite arrays of magnetic dots in the presence of an external magnetic field. J. Exp. Theor. Phys. 101, 1106–1121 (2005). https://doi.org/10.1134/1.2163926

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2163926

Keywords

Navigation