Skip to main content
Log in

Spontaneous and persistent currents in mesoscopic Aharonov-Bohm loops: Static properties and coherent dynamic behavior in crossed electric and magnetic fields

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to support persistent currents due to the Aharonov-Bohm flux, and the “spontaneous” persistent currents without the flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity, which is further restored at the increasing field, however. The dynamics of the Aharonov-Bohm loop in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence of an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bloch, Phys. Rev. B 2, 109 (1970).

    ADS  Google Scholar 

  2. I. O. Kulik, Pis’ma Zh. Éksp. Teor. Fiz. 11, 407 (1970) [JETP Lett. 11, 275 (1970)].

    Google Scholar 

  3. M. Büttiker, Y. Imry, and R. Landauer, Phys. Lett. 96A, 365 (1983).

    ADS  Google Scholar 

  4. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  5. I. O. Kulik, in Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, Ed. by I. O. Kulik and R. Ellialtioglu (Kluwer Academic, Dordrecht, 2000), p. 259.

    Google Scholar 

  6. E. Teller, Z. Phys. 67, 311 (1931).

    ADS  MATH  Google Scholar 

  7. L. D. Landau, Z. Phys. 64, 629 (1930).

    ADS  MATH  Google Scholar 

  8. N. B. Brandt, E. N. Bogachek, D. V. Gitsu, et al., Fiz. Nizk. Temp. 8, 718 (1982) [Sov. J. Low Temp. Phys. 8, 358 (1982)].

    Google Scholar 

  9. L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990).

    Article  ADS  Google Scholar 

  10. V. Chandrasekhar, R. A. Webb, M. J. Brady, et al., Phys. Rev. Lett. 67, 3578 (1991).

    ADS  Google Scholar 

  11. D. Mailly, C. Chapelier, and A. Benoit, Phys. Rev. Lett. 70, 2020 (1993).

    Article  ADS  Google Scholar 

  12. C. Schönenberger, A. Bachtold, C. Strunk, et al., Appl. Phys. A 69, 283 (1999).

    ADS  Google Scholar 

  13. B. L. Altshuler, A. G. Aronov, and B. Z. Spivak, Pis’ma Zh. Éksp. Teor. Fiz. 33, 101 (1981) [JETP Lett. 33, 94 (1981)].

    Google Scholar 

  14. A. Barone, T. Hakioglu, and I. O. Kulik, cond-mat/0203038.

  15. I. O. Kulik, T. Hakioglu, and A. Barone, Eur. Phys. J. B 30, 219 (2002).

    Article  ADS  Google Scholar 

  16. I. O. Kulik, in Towards the Controllable Quantum States: Mesoscopic Superconductivity and Spintronics, Ed. by H. Takayanagi and J. Nitta (World Sci., River Edge, N.J., 2003), p. 302.

    Google Scholar 

  17. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  18. D. Gatteschi, A. Caneschi, L. Pardi, and R. Sessoli, Science 265, 1054 (1994).

    ADS  Google Scholar 

  19. K. L. Taft, C. D. Delfs, G. C. Papaefthymiou, et al., J. Am. Chem. Soc. 116, 823 (1994).

    Article  Google Scholar 

  20. H. F. Cheung, E. K. Riedel, and Y. Gefen, Phys. Rev. Lett. 62, 587 (1989).

    ADS  Google Scholar 

  21. I. O. Kulik and I. K. Yanson, The Josephson Effect in Superconductive Tunneling Structures (Nauka, Moscow, 1970; Israel Program for Scientific Translations, Jerusalem, 1972).

    Google Scholar 

  22. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  23. A. J. Leggett, in Chance and Matter, Ed. by J. Souletier, J. Vannimenus, and R. Stora (Elsevier, Amsterdam, 1996), p. 395.

    Google Scholar 

  24. K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, Amsterdam, 1996).

    Google Scholar 

  25. Y. Makhlin, G. Schön, and A. Schnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  26. D. V. Averin, Fortschr. Phys. 48, 1055 (2000).

    Article  ADS  Google Scholar 

  27. H.-F. Cheung, Y. Gefen, E. K. Riedel, and W.-H. Shih, Phys. Rev. B 37, 6050 (1988).

    Article  ADS  Google Scholar 

  28. S. Latil, S. Roche, and A. Rubio, Phys. Rev. B 67, 165420 (2003).

  29. I. O. Kulik, A. S. Rozhavskii, and E. N. Bogachek, Pis’ma Zh. Éksp. Teor. Fiz. 47, 251 (1988) [JETP Lett. 47, 303 (1988)].

    Google Scholar 

  30. M. I. Vischer, B. Rejaei, and G. E. W. Bauer, Europhys. Lett. 36, 613 (1996).

    ADS  Google Scholar 

  31. Yu. I. Latyshev, O. Laborde, P. Monceau, and S. Klaumünzer, Phys. Rev. Lett. 78, 919 (1997).

    Article  ADS  Google Scholar 

  32. J. Yi, M. Y. Choi, K. Park, and E.-H. Lee, Phys. Rev. Lett. 78, 3523 (1997).

    Article  ADS  Google Scholar 

  33. B. Nathanson, O. Entin-Wohlman, and B. Mülschlegel, Phys. Rev. Lett. 80, 3416 (1998).

    Article  ADS  Google Scholar 

  34. G. Montambaux, Phys. Rev. Lett. 80, 3417 (1998).

    Article  ADS  Google Scholar 

  35. R. E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1955; Inostrannaya Literatura, Moscow, 1956).

    Google Scholar 

  36. H. J. Jahn and E. Teller, Proc. R. Soc. London, Ser. A 161, 220 (1937).

    ADS  Google Scholar 

  37. W. A. Harrison, Electronic Structure and the Properties of Solids (Cambridge Univ. Press, Cambridge, 1972; Mir, Moscow, 1983).

    Google Scholar 

  38. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge Univ. Press, London, 1972; Mir, Moscow, 1966).

    Google Scholar 

  39. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996; Nauka, Moscow, 1978).

    Google Scholar 

  40. L. N. Bulaevskii, Usp. Fiz. Nauk 115, 263 (1975) [Sov. Phys. Usp. 18, 131 (1975)].

    Google Scholar 

  41. I. O. Kulik, in Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, Ed. by M. Laudon and B. Romanowicz (Computational, Boston, 2003), Vol. 2, p. 531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 128, No. 6, 2005, pp. 1145–1155.

Original English Text Copyright © 2005 by Kulik.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulik, I.O. Spontaneous and persistent currents in mesoscopic Aharonov-Bohm loops: Static properties and coherent dynamic behavior in crossed electric and magnetic fields. J. Exp. Theor. Phys. 101, 999–1008 (2005). https://doi.org/10.1134/1.2163917

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2163917

Keywords

Navigation