Skip to main content
Log in

Probe field spectroscopy in three-level Λ systems under arbitrary collisional relaxation of low-frequency coherence

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate theoretically the spectrum of weak probe field absorption by three-level atoms with the Λ configuration of levels in the field of a strong electromagnetic wave acting on an adjacent transition and colliding with buffer gas atoms. Analysis is carried out for the general case of arbitrary collisional relaxation of low-frequency coherence at a transition between two lower levels. It is shown that, in the absence of collisional relaxation of low-frequency coherence, the probe field spectrum always exhibits clearly manifested anisotropy with respect to mutual orientation of wavevectors of the strong and probe radiation (even under small Doppler broadening). It is found that the probe field spectrum may acquire under certain conditions supernarrow resonances with a width proportional to the diffusion coefficient for atoms interacting with radiation. This fact may form the basis for a spectroscopic method for measuring transport frequencies of collisions between absorbing and buffer particles. A large-amplitude supernarrow resonance (with an amplitude much larger than the amplitude of the resonance near the line center), which is observed in the far wing of the absorption line, exhibits collisional narrowing (a nonlinear spectroscopic analog of the Dicke effect) at collision frequencies several orders of magnitude lower that the Doppler linewidth. Simple working equations proposed for describing the probe field spectrum are convenient for experimental data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Atomic and Molecular Spectra (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  2. A. K. Popov, Introduction in Nonlinear Spectroscopy (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  3. V. S. Letokhov and V. P. Chebotaev, High-Resolution Nonlinear Laser Spectroscopy (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  4. B. J. Feldman and M. S. Feld, Phys. Rev. A 5, 899 (1972).

    Article  ADS  Google Scholar 

  5. M. Kaivola, P. Thorsen, and O. Poulsen, Phys. Rev. A 32, 207 (1985).

    Article  ADS  Google Scholar 

  6. A. D. Wilson-Gordon, Phys. Rev. A 48, 4639 (1993).

    Article  ADS  Google Scholar 

  7. V. G. Arkhipkin, A. K. Popov, and A. S. Aleksandrovskii, Pis’ma Zh. Éksp. Teor. Fiz. 59, 371 (1994) [JETP Lett. 59, 398 (1994)].

    Google Scholar 

  8. Yu. I. Belousov, E. V. Podivilov, M. G. Stepanov, and D. A. Shapiro, Zh. Éksp. Teor. Fiz. 118, 328 (2000) [JETP 91, 287 (2000)].

    Google Scholar 

  9. S. A. Babin, E. V. Podivilov, V. V. Potapov, et al., Zh. Éksp. Teor. Fiz. 121, 807 (2002) [JETP 94, 694 (2002)].

    Google Scholar 

  10. Yu. I. Belousov and D. A. Shapiro, J. Phys. B: At. Mol. Opt. Phys. 36, 1495 (2003).

    Article  ADS  Google Scholar 

  11. W. Happer, Phys. Rep. 44, 169 (1972).

    Google Scholar 

  12. B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Usp. Fiz. Nauk 163(9), 1 (1993) [Phys. Usp. 36, 763 (1993)].

    Google Scholar 

  13. E. Arimondo, Prog. Opt. 35, 257 (1996).

    Google Scholar 

  14. M. O. Skalli and M. S. Zubairi, Quantum Optics (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  15. O. Kocharovskaya, Phys. Rep. 219, 175 (1992).

    Article  ADS  Google Scholar 

  16. A. K. Popov, Izv. Ross. Akad. Nauk, Ser. Fiz. 60, 99 (1996).

    Google Scholar 

  17. J. Mompart and R. Corbalan, J. Opt. B: Quantum Semiclassic. Opt. 2, R7 (2000).

    ADS  Google Scholar 

  18. A. I. Parkhomenko and A. M. Shalagin, Zh. Éksp. Teor. Fiz. 120, 830 (2001) [JETP 93, 723 (2001)].

    Google Scholar 

  19. S. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform Gases, 2nd ed. (Cambridge Univ. Press, Cambridge, 1952; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  20. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1971; Nauka, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 128, No. 6, 2005, pp. 1134–1144.

Original Russian Text Copyright © 2005 by Parkhomenko, Shalagin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhomenko, A.I., Shalagin, A.M. Probe field spectroscopy in three-level Λ systems under arbitrary collisional relaxation of low-frequency coherence. J. Exp. Theor. Phys. 101, 989–998 (2005). https://doi.org/10.1134/1.2163916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2163916

Keywords

Navigation