Skip to main content
Log in

Trapping of an electron in the transmission through two quantum dots coupled by a wire

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

We consider single-channel transmission through a double quantum dot that consists of two identical single dots coupled by a wire. The numerical solution for the scattering wave function shows that the resonance width of a few of the states may vanish when the width (or length) of the wire and the energy of the incident particle each take a certain value. In such a case, a particle is trapped inside the wire as the numerical visualization of the scattering wave function shows. To understand these numerical results, we explore a simple model with a small number of states, which allows us to consider the problem analytically. If the eigenenergies of the closed system cross the energies of the transmission zeroes, the wire effectively decouples from the rest of the system and traps the particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kleinwächter and I. Rotter, Phys. Rev. C 32, 1742 (1985); I. Rotter, Rep. Prog. Phys. 54, 635 (1991).

    ADS  Google Scholar 

  2. J. Okołowicz, M. Płoszajczak, and I. Rotter, Phys. Rep. 374, 271 (2003).

    ADS  MathSciNet  Google Scholar 

  3. A. I. Magunov, I. Rotter, and S. I. Strakhova, J. Phys. B 32, 1669 (1999); J. Phys. B 34, 29 (2001).

    ADS  Google Scholar 

  4. E. Persson, K. Pichugin, I. Rotter, and P. Seba, Phys. Rev. E 58, 8001 (1998); P. Seba, I. Rotter, M. Müller, et al., Phys. Rev. E 61, 66 (2000); I. Rotter, E. Persson, K. Pichugin, and P. Seba, Phys. Rev. E 62, 450 (2000).

    ADS  Google Scholar 

  5. E. Persson, I. Rotter, H. J. Stöckmann, and M. Barth, Phys. Rev. Lett. 85, 2478 (2000); H. J. Stöckmann et al., Phys. Rev. E 65, 066211 (2002).

    Article  ADS  Google Scholar 

  6. I. Rotter and A. F. Sadreev, Phys. Rev. E 71, 036227 (2005).

    Google Scholar 

  7. R. G. Nazmitdinov, K. N. Pichugin, I. Rotter, and P. Seba, Phys. Rev. E 64, 056214 (2001); Phys. Rev. B 66, 085322 (2002).

    Google Scholar 

  8. I. Rotter and A. F. Sadreev, Phys. Rev. E 71, 046204 (2005).

    Google Scholar 

  9. V. Shahbazyan and M. E. Raikh, Phys. Rev. B 49, 17123 (1994).

    Google Scholar 

  10. M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, Phys. Rev. B 67, 195335 (2003).

    Google Scholar 

  11. C. S. Kim and A. M. Satanin, Phys. Rev. B 58, 15 389 (1998).

  12. N. C. van der Vaart et al., Phys. Rev. Lett. 74, 4702 (1995).

    ADS  Google Scholar 

  13. F. R. Waugh et al., Phys. Rev. Lett. 75, 705 (1995).

    Article  ADS  Google Scholar 

  14. J. C. Chen, A. M. Chang, and M. R. Melloch, Phys. Rev. Lett. 92, 176801 (2004).

    Google Scholar 

  15. H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  16. K.-F. Berggren and Zh.-L. Ji, Phys. Rev. B 47, 6390 (1993).

    Article  ADS  Google Scholar 

  17. K. Vacek, A. Okiji, and H. Kasai, Phys. Rev. B 47, 3695 (1993).

    Article  ADS  Google Scholar 

  18. J. P. Carini et al., Phys. Rev. B 55, 9842 (1997).

    ADS  Google Scholar 

  19. H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); Ann. Phys. (N.Y.) 19, 287 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. S. Livshits, Sov. Phys. JETP 4, 91 (1957).

    MathSciNet  Google Scholar 

  21. I. Rotter, Rep. Prog. Phys. 54, 635 (1991).

    Article  ADS  Google Scholar 

  22. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  23. A. F. Sadreev and I. Rotter, J. Phys. A 36, 11413 (2003).

  24. M. N. Kiselev, K. A. Kikoin, and L. W. Molenkamp, JETP Lett. 77, 366 (2003).

    Article  ADS  Google Scholar 

  25. T.-S. Kim and S. Hershfield, Phys. Rev. B 67, 235330 (2003).

    Google Scholar 

  26. F. M. Dittes, Phys. Rep. 339, 215 (2000).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 82, No. 8, 2005, pp. 556–561.

Original English Text Copyright © 2005 by Sadreev, Bulgakov, Rotter.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadreev, A.F., Bulgakov, E.N. & Rotter, I. Trapping of an electron in the transmission through two quantum dots coupled by a wire. Jetp Lett. 82, 498–503 (2005). https://doi.org/10.1134/1.2150869

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2150869

PACS numbers

Navigation