Skip to main content
Log in

Discrete model of adsorption with a finite number of states

  • Heoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A discrete model of adsorption with allowance for recharge of the state and lateral interaction between molecules is constructed in the framework of the theory of probabilistic cellular automata. It is found that this model admits of the regular (ordered) behavior of the system accompanied by the global synchronization of the system’s parameters. The turbulent (chaotic)-ordered transition takes place through the occurrence of local ordered areas due to the appearance of local leading centers (pacemakers) and helical waves. The ordered behavior originates from intrinsic instability in the system. The ordering is related to the collective behavior of the subsystems constituting the entire system. The model can be extended to the case of chemical reactions between an adsorbate and the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Adamson, The Physical Chemistry of Surfaces, 4th ed. (Wiley, New York, 1982; Mir, Moscow, 1979).

    Google Scholar 

  2. F. Ozanam, J.-N. Chazalviel, A. Radi, et al., Phys. Chem. 95, 98 (1991).

    Google Scholar 

  3. J. Carstensen, R. Prange, G. S. Poprikov, and H. Föll, Appl. Phys. A 67, 459 (1998).

    Article  ADS  Google Scholar 

  4. R. L. Smith and S. D. Collins, J. Appl. Phys. 71, R1 (1992).

    Article  ADS  Google Scholar 

  5. E. Yu. Buchin and A. V. Prokaznikov, Pis’ma Zh. Tekh. Fiz. 23(5), 1 (1997) [Tech. Phys. Lett. 23, 244 (1997)].

    Google Scholar 

  6. D. Dini, S. Catarin, and F. Decker, in Proceedings of the International Conference “Porous Semiconductors: Science and Technology,” Mallorca, 1998, p. 13.

  7. V. Parhutik, Y. Chu, Z. Nagy, and P. A. Montano, in Proceedings of the International Conference “Porous Semiconductors: Science and Technology,” Mallorca, 1998, pp. 16–17.

  8. V. Parhutik and E. Matveeva, in Proceedings of the International Conference “Porous Semiconductors: Science and Technology,” Madrid, 2000, pp. 66–68.

  9. V. Parhutik, E. Matveeva, I. Tkachenko, et al., in Proceedings of the International Conference “Porous Semiconductors: Science and Technology,” Madrid, 2000, pp. 297–298.

  10. B. M. Kostishko and Yu. S. Nagornov, Zh. Tekh. Fiz. 71(7), 60 (2001) [Tech. Phys. 46, 847 (2001)].

    Google Scholar 

  11. Yu. E. Babanov, A. V. Prokaznikov, N. A. Rud, and V. B. Svetovoy, Phys. Status Solidi A 162, R7 (1997).

    Google Scholar 

  12. A. N. Laptev, A. V. Prokaznikov, and N. A. Rud, Pis’ma Zh. Tekh. Fiz. 26(23), 47 (2000) [Tech. Phys. Lett. 26, 1049 (2000)].

    Google Scholar 

  13. A. N. Laptev, A. V. Prokaznikov, and N. A. Rud, Mikrosist. Tekh., No. 6, 31 (2002).

  14. D. I. Bilenko, O. Y. Belobrovaya, E. A. Zharkova, et al., Semiconductors 36, 466 (2002).

    Article  ADS  Google Scholar 

  15. D. P. Bernatskii and V. G. Pavlov, Pis’ma Zh. Tekh. Fiz. 26, 22 (2000) [Tech. Phys. Lett. 26, 233 (2000)].

    Google Scholar 

  16. D. P. Bernatskii and V. G. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 46, 1494 (2004) [Phys. Solid State 46, 1538 (2004)].

    Google Scholar 

  17. Yu. E. Babanov, A. V. Prokaznikov, and V. B. Svetovoy, Vacuum 41, 902 (1990).

    Article  Google Scholar 

  18. S. A. Kaplii, A. V. Prokaznikov, and N. A. Rud, Pis’ma Zh. Tekh. Fiz. 30(14), 46 (2004) [Tech. Phys. Lett. 30, 595 (2004)].

    Google Scholar 

  19. Yu. A. Babanov, A. V. Prokaznikov, and V. B. Svetovoi, in All-Russia Conference with the Participation of Foreign Scientists “Mikroelektronika-94,” Zvenigorod, 1994, Chap. 2, pp. 593–594.

  20. E. Yu. Buchin and A. V. Prokaznikov, Phys. Low-Dimens. Semicond. Struct. 7–8, 69 (2003).

    Google Scholar 

  21. V. S. Anishchenko, Complex Oscillations in Simple Systems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  22. H. Fuks, nlin.CG/0302015 (2003).

  23. Y. Oono and M. Kohmoto, Phys. Rev. Lett. 55, 2927 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  24. V. K. Vanag, Usp. Fiz. Nauk 169, 481 (1999) [Phys. Usp. 42, 413 (1999)].

    Google Scholar 

  25. G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev. A 14, 2338 (1976).

    Article  ADS  Google Scholar 

  26. I. O. Protod’yakonov and S. V. Siparov, Mechanics of Adsorption in Gas-Solid Systems (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  27. I. Vosilyus and L. Pranyavichyus, Ion-Beam-Activated Processes on Solid Surfaces (Mokslas, Vil’nyus, 1987) [in Russian].

    Google Scholar 

  28. A. Traulsen and J. C. Claussen, cond-mat/0404694 (2004).

  29. S. A. Kaplii, A. V. Prokaznikov, and N. A. Rud, in Proceedings of the 2nd All-Russia Scientific Conference on the Design of Engineering and Scientific Applications in the MatLab Environment, Moscow, 2004, pp. 559–564.

  30. S. Wolfram, Rev. Mod. Phys. 55, 601 (1983).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 75, No. 12, 2005, pp. 1–9.

Original Russian Text Copyright © 2005 by Kapli\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Prokaznikov, Rud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplii, S.A., Prokaznikov, A.V. & Rud, N.A. Discrete model of adsorption with a finite number of states. Tech. Phys. 50, 1535–1543 (2005). https://doi.org/10.1134/1.2148555

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2148555

Keywords

Navigation