Skip to main content
Log in

Probing of the shallow donor and acceptor wave functions in silicon carbide and silicon through an EPR study of crystals with a modified isotopic composition

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The spatial distributions of the unpaired-electron wave functions of shallow N donors in SiC crystals and of shallow P and As donors in silicon crystals were determined by studying crystals with a modified content of the 29Si and 13C isotopes having a nonzero nuclear magnetic moment. As follows from the present EPR and available ENDOR data, the distribution of donor electrons in SiC depends substantially on the polytype and position in the lattice; indeed, in 4H-SiC, the unpaired electrons occupy primarily the Si s and p orbitals, whereas in 6H-SiC these electrons reside primarily in the s orbitals of C. The electron distributions for the N donor in the hexagonal position, which has a shallow level close to that obtained for this material in the effective-mass approximation, and for the donor occupying the quasi-cubic position differ substantially. The EPR spectrum of N in quasi-cubic positions was observed to have a hyperfine structure originating from a comparatively strong coupling with the first two coordination shells of Si and C, which were unambiguously identified. The effective-mass approximation breaks down close to the N donor occupying the quasi-cubic position, and the donor structure and the donor electron distribution become less symmetric. In silicon, reduction of the 29Si content brought about a substantial narrowing of the EPR line of the shallow P and As donors and an increase in the EPR signal intensity, as well as a noticeable increase in the spin-lattice relaxation time T 1. This offers the possibility of selectively studying these spectra by optically exciting a region of the crystal in order to shorten T 1 and thereby precluding EPR signal saturation only in the illuminated part of the material. This method may be used to advantage in developing materials for quantum computers based on donors in silicon and SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kohn and J. M. Luttinger, Phys. Rev. 97, 1721 (1955); Phys. Rev. 98, 915 (1955).

    ADS  Google Scholar 

  2. A. F. Kip, C. Kittel, R. A. Levy, and A. M. Portis, Phys. Rev. 91, 1066 (1953).

    Article  ADS  Google Scholar 

  3. P. G. Baranov, Yu. P. Veshchunov, and N. G. Romanov, Pis’ma Zh. Éksp. Teor. Fiz. 32(1), 3 (1980) [JETP Lett. 32 (1), 1 (1980)].

    Google Scholar 

  4. G. Feher, Phys. Rev. 114, 1219 (1959).

    ADS  Google Scholar 

  5. G. D. Watkins, in Point Defects in Solids, Ed. by J. H. Crowford and L. M. Slifkin (Plenum, New York, 1975), Vol. 2, p. 333; G. D. Watkins, in Deep Centers in Semiconductors, Ed. by S. T. Pantelides (Gordon and Breach, New York, 1986), p. 147.

    Google Scholar 

  6. D. K. Wilson, Phys. Rev. A 134, 265 (1964).

    ADS  Google Scholar 

  7. G. Feher, J. C. Hensel, and E. A. Gere, Phys. Rev. Lett. 5, 309 (1960).

    ADS  Google Scholar 

  8. H. H. Woodbury and G. W. Ludwig, Phys. Rev. 124, 1083 (1961).

    Article  ADS  Google Scholar 

  9. A. G. Zubatov, I. M. Zaritskii, S. N. Lukin, E. N. Mokhov, and V. G. Stepanov, Fiz. Tverd. Tela (Leningrad) 27, 322 (1985) [Sov. Phys. Solid State 27, 197 (1985)].

    Google Scholar 

  10. J. L. Ivey and R. L. Mieher, Phys. Rev. B: Solid State 11, 849 (1975).

    ADS  Google Scholar 

  11. A. van Duijn-Arnold, J. Mol, R. Verberk, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Phys. Rev. B: Condens. Matter 60, 15 829 (1999).

    Google Scholar 

  12. A. van Duijn-Arnold, R. Zondervan, J. Schmidt, P. G. Baranov, and E. N. Mokhov, Phys. Rev. B: Condens. Matter 64, 085 206 (2001).

    Google Scholar 

  13. E. N. Kalabukhova, S. N. Lukin, and W. C. Mitchel, Mater. Sci. Forum 433–436, 499 (2003).

    Google Scholar 

  14. N. T. Son, J. Isoya, S. Yamasaki, and E. Janzen, in Book of Abstracts of the 5th European Conference on Silicon Carbide and Related Materials, Bolonga, Italy, 2004 (CNR-IMM, Area Della Ricerca, Bologna, 2004).

    Google Scholar 

  15. P. G. Baranov, A. N. Ionov, I. V. Il’in, P. S. Kop’ev, E. N. Mokhov, and V. A. Khramtsov, Fiz. Tverd. Tela (St. Petersburg) 45, 984 (2003) [Phys. Solid State 45, 1030 (2003)].

    Google Scholar 

  16. Yu. A. Vodakov, E. N. Mokhov, G. Ramm, and A. D. Roenkov, Krist. Tech. 14, 729 (1979).

    Google Scholar 

  17. O. N. Godison, A. K. Kaliteevskii, V. I. Korolev, B. Y. Ber, V. Y. Davydov, M. A. Kaliteevskii, and P. S. Kop’ev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 913 (2001) [Semiconductors 35, 877 (2001)].

    Google Scholar 

  18. S. Greulich-Weber, Phys. Status Solidi A 162, 95 (1997).

    ADS  Google Scholar 

  19. C. F. Young, K. Xie, E. H. Poindexter, G. J. Gerardi, and D. J. Keeble, Appl. Phys. Lett. 70, 1858 (1997).

    ADS  Google Scholar 

  20. G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959).

    ADS  Google Scholar 

  21. M. T. Bennenbroek, A. Arnold, O. G. Poluektov, P. G. Baranov, and J. Schmidt, Phys. Rev. B: Condens. Matter 54, 11 276 (1996).

    Google Scholar 

  22. D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, Phys. Rev. Lett. 88, 045 504 (2002).

    Google Scholar 

  23. H. Overhof and U. Gerstmann, Phys. Rev. B: Condens. Matter 62, 12 585 (2000).

    Google Scholar 

  24. G. D. Watkins and Frank S. Ham, Phys. Rev. B: Solid State 1, 4071 (1970).

    ADS  Google Scholar 

  25. E. N. Kalabukhova, in Radiospectroscopy of Condensed Media, Ed. by M. D. Glinchuk (Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, 2000), Chap. II, p. 157 [in Russian].

    Google Scholar 

  26. W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher, Phys. Rev. 115, 1546 (1959).

    ADS  Google Scholar 

  27. Keith L. Brower, Phys. Rev. Lett. 44, 1627 (1980).

    Article  ADS  Google Scholar 

  28. K. Murakami, H. Kuribayashi, and K. Masuda, Phys. Rev. B: Condens. Matter 38, 1589 (1988).

    ADS  Google Scholar 

  29. R. P. Messmer and G. D. Watkins, Phys. Rev. B: Solid State 7, 2568 (1973).

    ADS  Google Scholar 

  30. G. G. DeLeo, W. B. Fowler, and G. D. Watkins, Phys. Rev. B: Condens. Matter 29, 3193 (1984).

    ADS  Google Scholar 

  31. S. T. Pantelides, W. A. Harrison, and F. Yndurain, Phys. Rev. B: Condens. Matter 34, 6038 (1986).

    ADS  Google Scholar 

  32. F. G. Anderson, Phys. Rev. B: Condens. Matter 39, 5392 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 12, 2005, pp. 2127–2141.

Original Russian Text Copyright © 2005 by Baranov, Ber, Godisov, Il’in, Ionov, Mokhov, Muzafarova, A. Kaliteevski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), M. Kaliteevski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Kop’ev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, P.G., Ber, B.Y., Godisov, O.N. et al. Probing of the shallow donor and acceptor wave functions in silicon carbide and silicon through an EPR study of crystals with a modified isotopic composition. Phys. Solid State 47, 2219–2232 (2005). https://doi.org/10.1134/1.2142882

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2142882

Keywords

Navigation