Skip to main content
Log in

Dissipation of diamagnetic currents and plasma heating in coronal magnetic loops

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

SOHO and TRACE data have shown that the coronal plasma is heated most actively near sunspots, in magnetic loops that issue from the penumbral region. The source of heating is nonuniform in height, and its power is maximum near the footpoints of the magnetic loops. The heating process is typically accompanied by the injection of dense chromospheric plasma into the coronal parts of the magnetic loops. It is important that the radiative losses cannot be compensated for via electron thermal conduction in the loops, which have temperatures of 1.0–1.5 MK; therefore, some heating source must operate throughout the entire length of the loop, balancing radiative losses and maintaining a quasi-steady state of the loop over at least several hours. As observations show, the plasma density inside the loops exceeds the density of the ambient plasma by more than an order of magnitude. It is supposed that the enhanced plasma density inside the loops results from the development of the ballooning mode of a flute-type instability in the sunspot penumbra, where the plasma of the inner sunspot region, with β i ≪ 1, comes into contact with the dense chromospheric plasma, which has β eβ i (β is the gas-to-magnetic pressure ratio). As the chromospheric plasma penetrates into the potential field of the sunspot, the generated diamagnetic currents balance the excess gas pressure. These currents efficiently decay due to the Cowling conductivity. Even if neutrals are few in number in the plasma (accounting for less than 10−5 of the total mass density), this conductivity ensures a heating rate that exceeds the rate of the normal Joule dissipation of diamagnetic currents by 7–8 orders of magnitude. Helium is an important factor in the context of plasma heating in magnetic loops. Its relatively high ionization potential, while not forbidding dielectronic recombination, ensures a sufficiently high number of neutrals in the coronal plasma and maintains a high heating rate due to the Cowling conductivity, even at coronal temperatures. The heating results from the “burning-out” of the nonpotential component of the magnetic field of the coronal magnetic loops. This mechanism provides the necessary heating rate for the plasma inside the loops if the loops are thin enough (with thickness of the order of 105–106 cm). This may imply that the observed (1–5) × 108-cm-thick loops consist of numerous hot, thin threads. For magnetic loops in hydrostatic equilibrium, the calculated heating function exponentially decreases with height on characteristic scales a factor of 1.8 smaller than the total-pressure scale height, since the scale heights for the total pressure and for the 4He partial pressure are different. The heating rate is proportional to the square of the plasma pressure in the loop, in agreement with observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Spicer, in Mechanisms of Chromospheric and Coronal Heating, Ed. by P. Ulmschneider, E. R. Prist, and R. Rosner (Springer-Verlag, Berlin, 1991), p. 547.

    Google Scholar 

  2. A. A. Galeev, R. Rosner, S. Serio, and G. S. Vaiana, Astrophys. J. 243, 131 (1981).

    Article  Google Scholar 

  3. E. N. Parker, Astrophys. J. 330, 447 (1988).

    Article  ADS  Google Scholar 

  4. E. N. Parker, in Mechanisms of Chromospheric and Coronal Heating, Ed. by P. Ulmaschneider, E. R. Prist, and R. Rosner (Springer, Berlin, 1991), p. 615.

    Google Scholar 

  5. E. Antonucci, D. Alexander, J. L. Culhane, et al., in The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, Ed. by K. T. Strong, J. L. R. Saba, B. M. Haisch, and J. T. Schmelz (Springer, Berlin, 1998), p. 331.

    Google Scholar 

  6. P. L. Bornmann, in The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, Ed. by K. T. Strong, J. L. Saba, B. M. Haisch, and J. T. Schmelz (Springer, Berlin, 1998), p. 301.

    Google Scholar 

  7. J. V. Hollweg, Astrophys. J. 277, 392 (1984).

    Article  ADS  Google Scholar 

  8. J. V. Hollweg, in Mechanisms of Chromospheric and Coronal Heating, Ed. by P. Ulmschneider, E. R. Prist, and R. Rosner (Springer, Berlin, 1991), p. 423.

    Google Scholar 

  9. J. Ionson, Astrophys. J. 276, 357 (1984).

    Article  ADS  Google Scholar 

  10. J. M. Davila, Astrophys. J. 317, 514 (1987).

    Article  ADS  Google Scholar 

  11. L. Ofman, J. M. Davila, and R. S. Steinolfson, Astrophys. J. 421, 360 (1994).

    Article  ADS  Google Scholar 

  12. D. B. Melrose and G. A. Dulk, Astrophys. J. 282, 308 (1984).

    Article  ADS  Google Scholar 

  13. M. J. Aschwanden, J. S. Newmark, J.-P. Delabourdiniére, et al., Astrophys. J. 515, 842 (1999).

    Article  ADS  Google Scholar 

  14. M. J. Aschwanden, D. Alexander, N. Hurlburt, et al., Astrophys. J. 531, 1129 (2000).

    Article  ADS  Google Scholar 

  15. F. Reale and G. Pares, Astrophys. J. 528, L45 (2000).

    Article  ADS  Google Scholar 

  16. A. Schlüter and L. Biermann, Z. Natürforsch. 5A, 237 (1950).

    Google Scholar 

  17. T. G. Cowling, Magnetohydrodynamics (Adam Hilger, London, 1976), p. 117.

    Google Scholar 

  18. K. Shibasaki, Astrophys. J. 557, 326 (2001).

    Article  ADS  Google Scholar 

  19. N. M. Bakhareva, V. V. Zaitsev, and M. L. Khodachenko, Sol. Phys. 139, 299 (1992).

    Article  ADS  Google Scholar 

  20. M. Suzuki and J. I. Sakai, Astrophys. J. 465, 393 (1996).

    Article  ADS  Google Scholar 

  21. M. Suzuki and J. I. Sakai, Astrophys. J. 487, 921 (1997).

    Article  ADS  Google Scholar 

  22. M. Ryutova, R. Shine, A. Title, and J. I. Sakai, Astrophys. J. 492, 402 (1997).

    Article  ADS  Google Scholar 

  23. K. Furusawa and J. I. Sakai, Astrophys. J. 540, 1156 (2000).

    Article  ADS  Google Scholar 

  24. E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985), p. 84.

    Google Scholar 

  25. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  26. R. Rosner, W. H. Tucker, and G. S. Vaiana, Astrophys. J. 220, 643 (1978).

    Article  ADS  Google Scholar 

  27. G. Peres, R. Rosner, S. Serio, and G. S. Vaiana, Astrophys. J. 252, 791 (1982).

    Article  ADS  Google Scholar 

  28. V. V. Zaitsev and M. L. Khodachenko, Radiophys. Quantum Electron. 40, 114 (1997).

    Google Scholar 

  29. T. Gold and F. Hoyle, Mon. Not. R. Astron. Soc. 120, 89 (1960).

    ADS  Google Scholar 

  30. M. J. Aschwanden, R. W. Nightingale, and P. Alexander, Astrophys. J. 541, 1059 (2000).

    Article  ADS  Google Scholar 

  31. J. E. Vernazza, E. H. Avrett, and R. Loeser, Astrophys. J., Suppl. Ser. 45, 635 (2000).

    ADS  Google Scholar 

  32. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1975; Wiley, New York, 1980).

    Google Scholar 

  33. A. Burgess, Astrophys. J. 139, 776 (1964).

    Article  ADS  Google Scholar 

  34. H. Zirin, The Solar Atmosphere (Mir, Moscow, 1969; Cambridge Univ. Press, 1988), p. 62.

    Google Scholar 

  35. J. D. Huba, NRL Plasma Formularly (NRL, Washington, 1994), p. 54.

    Google Scholar 

  36. M. Landini and M. Monsignori Fossi, Sol. Phys. 20, 322 (1971).

    Article  ADS  Google Scholar 

  37. N. K. Jain and U. Naran, Sol. Phys. 50, 361 (1976).

    Article  ADS  Google Scholar 

  38. J. M. Fontela, E. N. Avrett, and R. Loeser, Astrophys. J. 355, 700 (1990).

    ADS  Google Scholar 

  39. C. Litwin and R. Rosner, Astrophys. J. 412, 375 (1993).

    Article  ADS  Google Scholar 

  40. D. Lenz, E. E. De Luka, L. Golub, et al., Astrophys. J. 517, L155 (1999).

    Article  ADS  Google Scholar 

  41. J. Heyvaertz, Astron. Astrophys. 37, 65 (1974).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 82, No. 12, 2005, pp. 1127–1136.

Original Russian Text Copyright © 2005 by Za\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\)tsev, Shibasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, V.V., Shibasaki, K. Dissipation of diamagnetic currents and plasma heating in coronal magnetic loops. Astron. Rep. 49, 1009–1017 (2005). https://doi.org/10.1134/1.2139817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2139817

Keywords

Navigation